Spaces:
Sleeping
Sleeping
Update risk_model.py
Browse files- risk_model.py +6 -4
risk_model.py
CHANGED
@@ -7,7 +7,6 @@ MODEL_PATH = "heating_model.pkl"
|
|
7 |
DATA_PATH = "mantle_training.csv"
|
8 |
HISTORY = []
|
9 |
|
10 |
-
# Train the model and save
|
11 |
def train_and_save_model():
|
12 |
data = pd.read_csv(DATA_PATH)
|
13 |
X = data[["temperature", "duration"]]
|
@@ -17,20 +16,23 @@ def train_and_save_model():
|
|
17 |
dump(model, MODEL_PATH)
|
18 |
return model
|
19 |
|
20 |
-
# Load model safely
|
21 |
def load_model():
|
22 |
if not os.path.exists(MODEL_PATH):
|
23 |
return train_and_save_model()
|
24 |
return load(MODEL_PATH)
|
25 |
|
26 |
-
# Load once at startup
|
27 |
model = load_model()
|
28 |
|
29 |
def predict_risk(temp, duration):
|
30 |
global model
|
31 |
pred = model.predict([[temp, duration]])[0]
|
32 |
score = max(model.predict_proba([[temp, duration]])[0]) * 100
|
33 |
-
HISTORY.append({
|
|
|
|
|
|
|
|
|
|
|
34 |
return pred, round(score, 2)
|
35 |
|
36 |
def retrain_model():
|
|
|
7 |
DATA_PATH = "mantle_training.csv"
|
8 |
HISTORY = []
|
9 |
|
|
|
10 |
def train_and_save_model():
|
11 |
data = pd.read_csv(DATA_PATH)
|
12 |
X = data[["temperature", "duration"]]
|
|
|
16 |
dump(model, MODEL_PATH)
|
17 |
return model
|
18 |
|
|
|
19 |
def load_model():
|
20 |
if not os.path.exists(MODEL_PATH):
|
21 |
return train_and_save_model()
|
22 |
return load(MODEL_PATH)
|
23 |
|
|
|
24 |
model = load_model()
|
25 |
|
26 |
def predict_risk(temp, duration):
|
27 |
global model
|
28 |
pred = model.predict([[temp, duration]])[0]
|
29 |
score = max(model.predict_proba([[temp, duration]])[0]) * 100
|
30 |
+
HISTORY.append({
|
31 |
+
"Temperature": temp,
|
32 |
+
"Duration": duration,
|
33 |
+
"Risk": pred,
|
34 |
+
"Confidence": round(score, 2)
|
35 |
+
})
|
36 |
return pred, round(score, 2)
|
37 |
|
38 |
def retrain_model():
|