Spaces:
Sleeping
Sleeping
Create risk_model.py
Browse files- risk_model.py +35 -0
risk_model.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from sklearn.ensemble import RandomForestClassifier
|
3 |
+
from joblib import dump, load
|
4 |
+
|
5 |
+
MODEL_PATH = "heating_model.pkl"
|
6 |
+
DATA_PATH = "mantle_training.csv"
|
7 |
+
HISTORY = []
|
8 |
+
|
9 |
+
def load_model():
|
10 |
+
return load(MODEL_PATH)
|
11 |
+
|
12 |
+
model = load_model()
|
13 |
+
|
14 |
+
def predict_risk(temp, duration):
|
15 |
+
global model
|
16 |
+
pred = model.predict([[temp, duration]])[0]
|
17 |
+
score = max(model.predict_proba([[temp, duration]])[0]) * 100
|
18 |
+
HISTORY.append({"Temperature": temp, "Duration": duration, "Risk": pred, "Confidence": round(score, 2)})
|
19 |
+
return pred, round(score, 2)
|
20 |
+
|
21 |
+
def retrain_model():
|
22 |
+
try:
|
23 |
+
data = pd.read_csv(DATA_PATH)
|
24 |
+
X = data[["temperature", "duration"]]
|
25 |
+
y = data["risk_level"]
|
26 |
+
clf = RandomForestClassifier().fit(X, y)
|
27 |
+
dump(clf, MODEL_PATH)
|
28 |
+
global model
|
29 |
+
model = clf
|
30 |
+
return "✅ Model retrained successfully"
|
31 |
+
except Exception as e:
|
32 |
+
return f"❌ Error: {str(e)}"
|
33 |
+
|
34 |
+
def get_history_df():
|
35 |
+
return pd.DataFrame(HISTORY)
|