import os import pandas as pd from sklearn.ensemble import RandomForestClassifier from joblib import dump, load MODEL_PATH = "heating_model.pkl" DATA_PATH = "mantle_training.csv" HISTORY = [] # Function to train the model from scratch def train_and_save_model(): data = pd.read_csv(DATA_PATH) X = data[["temperature", "duration"]] y = data["risk_level"] model = RandomForestClassifier() model.fit(X, y) dump(model, MODEL_PATH) return model # Safe model loader def load_model(): if not os.path.exists(MODEL_PATH): return train_and_save_model() return load(MODEL_PATH) model = load_model()