Spaces:
Sleeping
Sleeping
Update risk_model.py
Browse files- risk_model.py +14 -23
risk_model.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import pandas as pd
|
2 |
from sklearn.ensemble import RandomForestClassifier
|
3 |
from joblib import dump, load
|
@@ -6,30 +7,20 @@ MODEL_PATH = "heating_model.pkl"
|
|
6 |
DATA_PATH = "mantle_training.csv"
|
7 |
HISTORY = []
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def load_model():
|
|
|
|
|
10 |
return load(MODEL_PATH)
|
11 |
|
12 |
model = load_model()
|
13 |
-
|
14 |
-
def predict_risk(temp, duration):
|
15 |
-
global model
|
16 |
-
pred = model.predict([[temp, duration]])[0]
|
17 |
-
score = max(model.predict_proba([[temp, duration]])[0]) * 100
|
18 |
-
HISTORY.append({"Temperature": temp, "Duration": duration, "Risk": pred, "Confidence": round(score, 2)})
|
19 |
-
return pred, round(score, 2)
|
20 |
-
|
21 |
-
def retrain_model():
|
22 |
-
try:
|
23 |
-
data = pd.read_csv(DATA_PATH)
|
24 |
-
X = data[["temperature", "duration"]]
|
25 |
-
y = data["risk_level"]
|
26 |
-
clf = RandomForestClassifier().fit(X, y)
|
27 |
-
dump(clf, MODEL_PATH)
|
28 |
-
global model
|
29 |
-
model = clf
|
30 |
-
return "✅ Model retrained successfully"
|
31 |
-
except Exception as e:
|
32 |
-
return f"❌ Error: {str(e)}"
|
33 |
-
|
34 |
-
def get_history_df():
|
35 |
-
return pd.DataFrame(HISTORY)
|
|
|
1 |
+
import os
|
2 |
import pandas as pd
|
3 |
from sklearn.ensemble import RandomForestClassifier
|
4 |
from joblib import dump, load
|
|
|
7 |
DATA_PATH = "mantle_training.csv"
|
8 |
HISTORY = []
|
9 |
|
10 |
+
# Function to train the model from scratch
|
11 |
+
def train_and_save_model():
|
12 |
+
data = pd.read_csv(DATA_PATH)
|
13 |
+
X = data[["temperature", "duration"]]
|
14 |
+
y = data["risk_level"]
|
15 |
+
model = RandomForestClassifier()
|
16 |
+
model.fit(X, y)
|
17 |
+
dump(model, MODEL_PATH)
|
18 |
+
return model
|
19 |
+
|
20 |
+
# Safe model loader
|
21 |
def load_model():
|
22 |
+
if not os.path.exists(MODEL_PATH):
|
23 |
+
return train_and_save_model()
|
24 |
return load(MODEL_PATH)
|
25 |
|
26 |
model = load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|