Sanjayraju30 commited on
Commit
bb607ff
·
verified ·
1 Parent(s): 77a2d63

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -20
app.py CHANGED
@@ -1,14 +1,7 @@
1
  import gradio as gr
2
- from fastapi import FastAPI
3
  from risk_model import predict_risk, retrain_model, get_history_df
4
 
5
- # Create FastAPI instance
6
- fastapi_app = FastAPI()
7
-
8
- # Gradio UI blocks
9
- gradio_app = gr.Blocks()
10
-
11
- with gradio_app:
12
  gr.Markdown("## 🔥 Heating Mantle Safety Risk Predictor")
13
 
14
  with gr.Row():
@@ -23,14 +16,11 @@ with gradio_app:
23
  score = gr.Textbox(label="Confidence (%)")
24
  retrain_output = gr.Textbox(label="Retrain Status")
25
 
26
- history_table = gr.Dataframe(
27
- headers=["Temperature", "Duration", "Risk", "Confidence"],
28
- label="📈 Prediction History"
29
- )
30
 
31
  def classify(temp, duration):
32
  if temp <= 0 or duration <= 0:
33
- return "Invalid Input", "Use values > 0", get_history_df()
34
  risk, confidence = predict_risk(temp, duration)
35
  emoji = "🟢" if risk == "Low" else "🟠" if risk == "Moderate" else "🔴"
36
  return f"{emoji} {risk}", f"{confidence}%", get_history_df()
@@ -38,10 +28,4 @@ with gradio_app:
38
  predict_btn.click(classify, inputs=[temp, duration], outputs=[result, score, history_table])
39
  retrain_btn.click(retrain_model, outputs=[retrain_output])
40
 
41
- # Optional test route
42
- @fastapi_app.get("/")
43
- def root():
44
- return {"message": "Heating Mantle FastAPI is working"}
45
-
46
- # ✅ Hugging Face requires this:
47
- app = gr.mount_gradio_app(fastapi_app, gradio_app, path="/predict-ui")
 
1
  import gradio as gr
 
2
  from risk_model import predict_risk, retrain_model, get_history_df
3
 
4
+ with gr.Blocks() as demo:
 
 
 
 
 
 
5
  gr.Markdown("## 🔥 Heating Mantle Safety Risk Predictor")
6
 
7
  with gr.Row():
 
16
  score = gr.Textbox(label="Confidence (%)")
17
  retrain_output = gr.Textbox(label="Retrain Status")
18
 
19
+ history_table = gr.Dataframe(headers=["Temperature", "Duration", "Risk", "Confidence"], label="📈 Prediction History")
 
 
 
20
 
21
  def classify(temp, duration):
22
  if temp <= 0 or duration <= 0:
23
+ return "Invalid Input", "Use values > 0", get_history_df()
24
  risk, confidence = predict_risk(temp, duration)
25
  emoji = "🟢" if risk == "Low" else "🟠" if risk == "Moderate" else "🔴"
26
  return f"{emoji} {risk}", f"{confidence}%", get_history_df()
 
28
  predict_btn.click(classify, inputs=[temp, duration], outputs=[result, score, history_table])
29
  retrain_btn.click(retrain_model, outputs=[retrain_output])
30
 
31
+ demo.launch()