import gradio as gr from risk_model import predict_risk, retrain_model, get_history_df import pandas as pd import matplotlib.pyplot as plt with gr.Blocks() as demo: gr.Markdown("## 🔥 Heating Mantle Safety Risk Predictor") with gr.Row(): temp = gr.Number(label="Max Temperature (°C)", value=100) duration = gr.Number(label="Duration (min)", value=30) with gr.Row(): predict_btn = gr.Button("🔍 Predict") retrain_btn = gr.Button("🔁 Retrain Model") result = gr.Textbox(label="Risk Prediction") alert = gr.Textbox(label="🚨 Alert Message") ist_time = gr.Textbox(label="Timestamp (IST)") retrain_output = gr.Textbox(label="Retrain Status") summary = gr.Markdown() history_table = gr.Dataframe(headers=["Temperature", "Duration", "Risk", "Timestamp"], label="📈 Prediction History") plot = gr.Plot(label="📊 Risk Trend Chart") def classify(temp, duration): if temp <= 0 or duration <= 0: return "❌ Invalid", "Invalid", "Invalid", "", pd.DataFrame(), plt.figure() risk, timestamp = predict_risk(temp, duration) if risk == "Low": alert_msg = "✅ SAFE - No action needed" elif risk == "Moderate": alert_msg = "⚠️ SAFE - Monitor closely" else: alert_msg = "🔥 SHUTDOWN - Immediate attention needed" summary_md = f""" ### 🔎 Summary - **Max Temp**: {temp} °C - **Duration**: {duration} min - **Risk**: {risk} - **Timestamp**: {timestamp} - **Alert**: {alert_msg} """ df = get_history_df() # Convert Risk to numeric for plotting risk_map = {'Low': 1, 'Moderate': 2, 'High': 3} df["Risk_Num"] = df["Risk"].map(risk_map) fig, ax = plt.subplots(figsize=(6, 3)) ax.plot(df["Timestamp"], df["Risk_Num"], marker="o", linestyle="-", color="red") a