Sanjayraju30 commited on
Commit
562f13d
·
verified ·
1 Parent(s): 7670adb

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +109 -32
src/streamlit_app.py CHANGED
@@ -1,40 +1,117 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
 
 
 
 
 
 
 
 
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
 
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
 
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
 
 
 
18
 
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
 
 
 
 
 
 
 
 
 
 
 
22
 
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
 
 
 
 
 
 
 
 
 
32
 
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ import cv2
3
+ import pandas as pd
4
+ import tempfile
5
+ import os
6
+ from services.video_service import get_video_frame
7
+ from services.detection_service import detect_objects
8
+ from services.fault_service import detect_pole_faults
9
+ from services.salesforce_dispatcher import send_to_salesforce
10
 
11
+ st.title("Pole Fault Detection")
12
+ st.write("Upload a video (.mp4) or image (.jpg, .png) to detect pole faults.")
 
 
 
 
13
 
14
+ # File uploader
15
+ uploaded_file = st.file_uploader("Choose a file", type=["mp4", "jpg", "png"])
16
 
17
+ if uploaded_file is not None:
18
+ # Save uploaded file to temporary location
19
+ with tempfile.NamedTemporaryFile(delete=False, suffix=f".{uploaded_file.name.split('.')[-1]}") as tmp_file:
20
+ tmp_file.write(uploaded_file.read())
21
+ file_path = tmp_file.name
22
 
23
+ if uploaded_file.type.startswith("video"):
24
+ # Process video
25
+ st.subheader("Processed Video")
26
+ video_placeholder = st.empty()
27
+ fault_table = st.empty()
28
+ frame_gen = get_video_frame(file_path)
29
+ output_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
30
+ fourcc = cv2.VideoWriter_fourcc(*"mp4v")
31
+ cap = cv2.VideoCapture(file_path)
32
+ fps = cap.get(cv2.CAP_PROP_FPS)
33
+ width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
34
+ height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
35
+ out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
36
+ faults_list = []
37
 
38
+ for frame in frame_gen:
39
+ # Save frame temporarily for detection
40
+ cv2.imwrite("temp.jpg", frame)
41
+ detections = detect_objects("temp.jpg")
42
+ faults = detect_pole_faults("temp.jpg")
43
+ alert_payload = {
44
+ "detections": detections,
45
+ "faults": bool(faults),
46
+ "fault_details": faults
47
+ }
48
+ # Send to Salesforce
49
+ send_to_salesforce(alert_payload)
50
+ faults_list.extend(faults)
51
+ # Annotate frame (basic text overlay for faults)
52
+ for fault in faults:
53
+ cv2.putText(
54
+ frame,
55
+ f"{fault['fault_type']} ({fault['confidence']:.2f})",
56
+ (50, 50),
57
+ cv2.FONT_HERSHEY_SIMPLEX,
58
+ 1,
59
+ (0, 0, 255),
60
+ 2
61
+ )
62
+ out.write(frame)
63
+ # Display frame in Streamlit
64
+ video_placeholder.image(frame, channels="BGR")
65
 
66
+ out.release()
67
+ cap.release()
68
+ # Display final video
69
+ st.video(output_path)
70
+ # Display faults table
71
+ if faults_list:
72
+ df = pd.DataFrame(faults_list)
73
+ fault_table.subheader("Detected Faults")
74
+ fault_table.dataframe(df)
75
+ else:
76
+ fault_table.write("No faults detected.")
77
+ # Clean up
78
+ os.remove(file_path)
79
+ os.remove(output_path)
80
+ os.remove("temp.jpg")
81
 
82
+ else:
83
+ # Process image
84
+ st.subheader("Processed Image")
85
+ image = cv2.imread(file_path)
86
+ cv2.imwrite("temp.jpg", image)
87
+ detections = detect_objects("temp.jpg")
88
+ faults = detect_pole_faults("temp.jpg")
89
+ alert_payload = {
90
+ "detections": detections,
91
+ "faults": bool(faults),
92
+ "fault_details": faults
93
+ }
94
+ # Send to Salesforce
95
+ send_to_salesforce(alert_payload)
96
+ # Annotate image (basic text overlay for faults)
97
+ for fault in faults:
98
+ cv2.putText(
99
+ image,
100
+ f"{fault['fault_type']} ({fault['confidence']:.2f})",
101
+ (50, 50),
102
+ cv2.FONT_HERSHEY_SIMPLEX,
103
+ 1,
104
+ (0, 0, 255),
105
+ 2
106
+ )
107
+ st.image(image, channels="BGR", caption="Processed Image")
108
+ # Display faults table
109
+ if faults:
110
+ st.subheader("Detected Faults")
111
+ df = pd.DataFrame(faults)
112
+ st.dataframe(df)
113
+ else:
114
+ st.write("No faults detected.")
115
+ # Clean up
116
+ os.remove(file_path)
117
+ os.remove("temp.jpg")