Spaces:
Build error
Build error
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +10 -110
src/streamlit_app.py
CHANGED
@@ -1,117 +1,17 @@
|
|
1 |
import streamlit as st
|
2 |
import cv2
|
3 |
-
import
|
4 |
-
import tempfile
|
5 |
-
import os
|
6 |
-
from ..services.video_service import get_video_frame
|
7 |
-
from ..services.detection_service import detect_objects
|
8 |
-
from ..services.fault_service import detect_pole_faults
|
9 |
-
from ..services.salesforce_dispatcher import send_to_salesforce
|
10 |
|
11 |
-
st.title("
|
12 |
-
st.write("Upload a video (.mp4) or image (.jpg, .png) to detect pole faults.")
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{uploaded_file.name.split('.')[-1]}") as tmp_file:
|
20 |
-
tmp_file.write(uploaded_file.read())
|
21 |
-
file_path = tmp_file.name
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
st.subheader("Processed Video")
|
26 |
-
video_placeholder = st.empty()
|
27 |
-
fault_table = st.empty()
|
28 |
-
frame_gen = get_video_frame(file_path)
|
29 |
-
output_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
|
30 |
-
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
31 |
-
cap = cv2.VideoCapture(file_path)
|
32 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
33 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
34 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
35 |
-
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
36 |
-
faults_list = []
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
cv2.imwrite("temp.jpg", frame)
|
41 |
-
detections = detect_objects("temp.jpg")
|
42 |
-
faults = detect_pole_faults("temp.jpg")
|
43 |
-
alert_payload = {
|
44 |
-
"detections": detections,
|
45 |
-
"faults": bool(faults),
|
46 |
-
"fault_details": faults
|
47 |
-
}
|
48 |
-
# Send to Salesforce
|
49 |
-
send_to_salesforce(alert_payload)
|
50 |
-
faults_list.extend(faults)
|
51 |
-
# Annotate frame (basic text overlay for faults)
|
52 |
-
for fault in faults:
|
53 |
-
cv2.putText(
|
54 |
-
frame,
|
55 |
-
f"{fault['fault_type']} ({fault['confidence']:.2f})",
|
56 |
-
(50, 50),
|
57 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
58 |
-
1,
|
59 |
-
(0, 0, 255),
|
60 |
-
2
|
61 |
-
)
|
62 |
-
out.write(frame)
|
63 |
-
# Display frame in Streamlit
|
64 |
-
video_placeholder.image(frame, channels="BGR")
|
65 |
-
|
66 |
-
out.release()
|
67 |
-
cap.release()
|
68 |
-
# Display final video
|
69 |
-
st.video(output_path)
|
70 |
-
# Display faults table
|
71 |
-
if faults_list:
|
72 |
-
df = pd.DataFrame(faults_list)
|
73 |
-
fault_table.subheader("Detected Faults")
|
74 |
-
fault_table.dataframe(df)
|
75 |
-
else:
|
76 |
-
fault_table.write("No faults detected.")
|
77 |
-
# Clean up
|
78 |
-
os.remove(file_path)
|
79 |
-
os.remove(output_path)
|
80 |
-
os.remove("temp.jpg")
|
81 |
-
|
82 |
-
else:
|
83 |
-
# Process image
|
84 |
-
st.subheader("Processed Image")
|
85 |
-
image = cv2.imread(file_path)
|
86 |
-
cv2.imwrite("temp.jpg", image)
|
87 |
-
detections = detect_objects("temp.jpg")
|
88 |
-
faults = detect_pole_faults("temp.jpg")
|
89 |
-
alert_payload = {
|
90 |
-
"detections": detections,
|
91 |
-
"faults": bool(faults),
|
92 |
-
"fault_details": faults
|
93 |
-
}
|
94 |
-
# Send to Salesforce
|
95 |
-
send_to_salesforce(alert_payload)
|
96 |
-
# Annotate image (basic text overlay for faults)
|
97 |
-
for fault in faults:
|
98 |
-
cv2.putText(
|
99 |
-
image,
|
100 |
-
f"{fault['fault_type']} ({fault['confidence']:.2f})",
|
101 |
-
(50, 50),
|
102 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
103 |
-
1,
|
104 |
-
(0, 0, 255),
|
105 |
-
2
|
106 |
-
)
|
107 |
-
st.image(image, channels="BGR", caption="Processed Image")
|
108 |
-
# Display faults table
|
109 |
-
if faults:
|
110 |
-
st.subheader("Detected Faults")
|
111 |
-
df = pd.DataFrame(faults)
|
112 |
-
st.dataframe(df)
|
113 |
-
else:
|
114 |
-
st.write("No faults detected.")
|
115 |
-
# Clean up
|
116 |
-
os.remove(file_path)
|
117 |
-
os.remove("temp.jpg")
|
|
|
1 |
import streamlit as st
|
2 |
import cv2
|
3 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
st.title("OpenCV Image Display Example")
|
|
|
6 |
|
7 |
+
# Create a black image
|
8 |
+
image = np.zeros((200, 200, 3), dtype=np.uint8)
|
9 |
|
10 |
+
# Draw a red circle
|
11 |
+
cv2.circle(image, (100, 100), 50, (0, 0, 255), -1)
|
|
|
|
|
|
|
12 |
|
13 |
+
# Convert BGR to RGB
|
14 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Display the image in Streamlit
|
17 |
+
st.image(image_rgb, caption="Red Circle", use_column_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|