import streamlit as st import cv2 import requests from transformers import pipeline from ultralytics import YOLO import numpy as np from io import BytesIO # Initialize the object detection model object_detector = pipeline("object-detection", model="facebook/detr-resnet-50") thermal_model = YOLO("thermal_model.pt") def detect_intrusion(image): detections = object_detector(image) return [d for d in detections if d['score'] > 0.7] def detect_thermal_anomalies(image): results = thermal_model(image) flagged = [] for r in results: if hasattr(r, 'temperature') and r.temperature > 75: flagged.append(r) return flagged def detect_shading(image): # Basic approach to detect shadows or dust gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(gray, 120, 255, cv2.THRESH_BINARY) contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) return len(contours) > 5 # heuristic for detecting large shadow regions def process_frame(frame): # Convert the frame into the format expected by the AI models detections = detect_intrusion(frame) thermal_anomalies = detect_thermal_anomalies(frame) shading = detect_shading(frame) return detections, thermal_anomalies, shading def create_alert(detections, thermal_anomalies, shading): alert_message = "Solar Panel Fault Detected!" if detections: alert_message += " Intrusion detected!" if thermal_anomalies: alert_message += " Overheating detected!" if shading: alert_message += " Shading or dust detected!" # Optionally send to Salesforce or another CRM system payload = { "Alert_Type__c": "Fault Detected", "Message__c": alert_message, "Confidence_Score__c": 85 # Example value, replace with actual confidence } requests.post("YOUR_SALESFORCE_API_ENDPOINT", json=payload) return alert_message # Streamlit interface st.title("Solar Panel Fault Detection") uploaded_file = st.file_uploader("Upload a video", type=["mp4"]) if uploaded_file: video_bytes = uploaded_file.read() video = cv2.VideoCapture(BytesIO(video_bytes)) while video.isOpened(): ret, frame = video.read() if not ret: break detections, thermal_anomalies, shading = process_frame(frame) alert_message = create_alert(detections, thermal_anomalies, shading) st.image(frame, caption="Current Frame", channels="BGR") st.write(alert_message) # Display alerts or other relevant info