Spaces:
Sleeping
Sleeping
Create modules/ai_engine.py
Browse files- modules/ai_engine.py +27 -0
modules/ai_engine.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
from transformers import TimeSeriesTransformerModel, TimeSeriesTransformerConfig
|
4 |
+
|
5 |
+
class AIEngine:
|
6 |
+
def __init__(self):
|
7 |
+
config = TimeSeriesTransformerConfig(
|
8 |
+
input_size=4, # SolarGen, WindGen, Tilt, Vibration
|
9 |
+
output_size=1, # Health Score
|
10 |
+
context_length=10,
|
11 |
+
prediction_length=1
|
12 |
+
)
|
13 |
+
self.model = TimeSeriesTransformerModel(config)
|
14 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
self.model.to(self.device)
|
16 |
+
|
17 |
+
def preprocess_data(self, df: pd.DataFrame) -> torch.Tensor:
|
18 |
+
features = df[["SolarGen(kWh)", "WindGen(kWh)", "Tilt(°)", "Vibration(g)"]].values
|
19 |
+
return torch.tensor(features, dtype=torch.float32).unsqueeze(0).to(self.device)
|
20 |
+
|
21 |
+
def predict_health(self, df: pd.DataFrame) -> pd.DataFrame:
|
22 |
+
input_data = self.preprocess_data(df)
|
23 |
+
with torch.no_grad():
|
24 |
+
predictions = self.model(input_data).logits.squeeze().cpu().numpy()
|
25 |
+
df["HealthScore"] = predictions
|
26 |
+
df["ML_Anomaly"] = df["HealthScore"].apply(lambda x: "Risk" if x < 0.5 else "Normal")
|
27 |
+
return df
|