Spaces:
Sleeping
Sleeping
File size: 5,884 Bytes
ee68036 cc6391c 523ceab ee68036 523ceab cc6391c 523ceab cc6391c 523ceab cc6391c 523ceab cc6391c ee68036 523ceab cc6391c 523ceab ee68036 523ceab cc6391c 523ceab ee68036 523ceab ee68036 cc6391c ee68036 cc6391c 523ceab cc6391c ee68036 523ceab ee68036 523ceab cc6391c 523ceab cc6391c 523ceab cc6391c 523ceab cc6391c ee68036 523ceab ee68036 523ceab ee68036 523ceab ee68036 523ceab ee68036 cc6391c 523ceab cc6391c ee68036 523ceab ee68036 523ceab ee68036 cc6391c 523ceab cc6391c ee68036 523ceab ee68036 523ceab cc6391c 523ceab ee68036 523ceab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import cv2
import numpy as np
import easyocr
import re
from PIL import Image, ImageDraw
import pytz
from datetime import datetime
from skimage import filters
class WeightDetector:
def __init__(self):
"""OCR optimized for 7-segment displays"""
self.reader = easyocr.Reader(
['en'],
gpu=True,
model_storage_directory='model',
download_enabled=True,
recog_network='english_g2' # Better for digital displays
)
self.ist = pytz.timezone('Asia/Kolkata')
def get_current_ist(self) -> str:
"""Get current IST time"""
return datetime.now(self.ist).strftime('%Y-%m-%d %H:%M:%S IST')
def is_blurry(self, image: np.ndarray, threshold=100) -> bool:
"""Check if image is blurry using Laplacian variance"""
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
variance = cv2.Laplacian(gray, cv2.CV_64F).var()
return variance < threshold
def preprocess_7segment(self, image: np.ndarray) -> np.ndarray:
"""Optimized preprocessing for 7-segment displays"""
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Adaptive thresholding for digital displays
thresh = cv2.adaptiveThreshold(
gray, 255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, 11, 2
)
# Remove small noise
kernel = np.ones((2, 2), np.uint8)
cleaned = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
return cleaned
def extract_weight(self, text: str) -> Optional[float]:
"""Extract weight value (handles decimals, units like g/kg)"""
text = text.replace(" ", "").replace(",", ".")
# Patterns for digital scales (e.g., "0.000g", "12.34 kg")
patterns = [
r'(\d+\.\d+)\s*[gGkK]', # 12.34g or 12.34kg
r'(\d+)\s*[gGkK]', # 123g or 123kg
r'(\d+\.\d+)', # Decimal only
r'(\d+)' # Whole number
]
for pattern in patterns:
match = re.search(pattern, text)
if match:
try:
value = float(match.group(1))
if 'k' in text.lower(): # Convert kg to g
return value * 1000
return value
except ValueError:
continue
return None
def detect_weight(self, image_path: str) -> dict:
"""Detect weight from image with error checks"""
try:
img = Image.open(image_path).convert("RGB")
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
# Check for blur
if self.is_blurry(img_cv):
return {
"weight": None,
"message": "⚠️ Image is blurry! Ensure clear focus.",
"image": img,
"time": self.get_current_ist()
}
# Preprocess for 7-segment digits
processed = self.preprocess_7segment(img_cv)
# OCR with 7-segment optimization
results = self.reader.readtext(
processed,
allowlist='0123456789.gkGKlL',
paragraph=False,
text_threshold=0.7,
width_ths=1.5
)
# Extract and validate weights
detected_weights = []
for (bbox, text, prob) in results:
weight = self.extract_weight(text)
if weight and prob > 0.5: # Minimum confidence
detected_weights.append({
"weight": weight,
"text": text,
"probability": prob,
"bbox": bbox
})
# Select best match (highest confidence + largest area)
if detected_weights:
detected_weights.sort(
key=lambda x: (x["probability"],
(x["bbox"][2][0] - x["bbox"][0][0]) * # Width
(x["bbox"][2][1] - x["bbox"][0][1])), # Height
reverse=True
)
best_match = detected_weights[0]
# Draw annotations
draw = ImageDraw.Draw(img)
for item in detected_weights:
bbox = item["bbox"]
polygon = [(int(x), int(y)) for [x, y] in bbox]
color = "green" if item == best_match else "red"
draw.polygon(polygon, outline=color, width=2)
label = f"{item['weight']}g (Conf: {item['probability']:.2f})"
draw.text((polygon[0][0], polygon[0][1] - 15), label, fill=color)
# Add timestamp
draw.text((10, 10), f"Time: {self.get_current_ist()}", fill="blue")
return {
"weight": best_match["weight"],
"message": f"✅ Detected: {best_match['weight']}g (Conf: {best_match['probability']:.2f})",
"image": img,
"time": self.get_current_ist()
}
return {
"weight": None,
"message": "❌ No weight detected. Ensure clear 7-segment digits.",
"image": img,
"time": self.get_current_ist()
}
except Exception as e:
return {
"weight": None,
"message": f"⚠️ Error: {str(e)}",
"image": None,
"time": self.get_current_ist()
} |