from transformers import TrOCRProcessor, VisionEncoderDecoderModel from PIL import Image import re # Load model + processor processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1") model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1") def extract_weight(image: Image.Image) -> str: image = image.convert("RGB") pixel_values = processor(images=image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values, max_length=20) full_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] # For debugging (optional): print("OCR Output:", full_text) # Extract number (weight) match = re.search(r"(\d+(\.\d+)?)", full_text) if match: weight = match.group(1) else: return "No valid weight detected" # Detect unit — smarter match text_lower = full_text.lower().replace(" ", "") if any(unit in text_lower for unit in ["kg", "kgs", "kilogram", "kilo", "k.g"]): unit = "kg" elif any(unit in text_lower for unit in ["g", "gram", "grams"]): unit = "grams" else: # Smart fallback: use value if float(weight) >= 5: unit = "kg" else: unit = "grams" return f"{weight} {unit}"