from transformers import TrOCRProcessor, VisionEncoderDecoderModel from PIL import Image import re # Load model + processor processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1") model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1") def extract_weight(image: Image.Image) -> str: image = image.convert("RGB") pixel_values = processor(images=image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) full_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] # Lowercase text but don't strip spacing before kg detection full_text_lower = full_text.lower() # Detect unit if "kg" in full_text_lower.replace(" ", ""): unit = "kg" elif "g" in full_text_lower.replace(" ", "") or "gram" in full_text_lower: unit = "grams" else: unit = "grams" # default # Extract number using regex match = re.search(r"(\d+(\.\d+)?)", full_text) if match: weight = match.group(1) return f"{weight} {unit}" else: return "No valid weight detected"