File size: 1,036 Bytes
d754b04
65ef5f8
d22d28e
65ef5f8
d754b04
 
 
65ef5f8
513f893
 
d754b04
 
 
65ef5f8
d754b04
a4b646d
5217dbe
fb27fac
a4b646d
fb27fac
a4b646d
fb27fac
 
5217dbe
fb27fac
d754b04
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import re

# Load smaller/faster model
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-small-printed")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-small-printed")

def extract_weight(image: Image.Image) -> str:
    image = image.convert("RGB")
    pixel_values = processor(images=image, return_tensors="pt").pixel_values
    generated_ids = model.generate(pixel_values, max_length=32)
    full_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

    cleaned = full_text.lower().replace(" ", "")
    match = re.search(r"(\d+(\.\d+)?)", cleaned)
    weight = match.group(1) if match else None

    if any(u in cleaned for u in ["kg", "kgs", "kilogram", "kilo"]):
        unit = "kg"
    elif any(u in cleaned for u in ["g", "gram", "grams"]):
        unit = "grams"
    else:
        unit = "kg" if weight and float(weight) >= 5 else "grams"

    return f"{weight} {unit}" if weight else ""