File size: 2,966 Bytes
0590b95
d55b56b
 
9bbac2d
d55b56b
b4bd6e7
 
 
7926822
b4bd6e7
 
 
 
7926822
b4bd6e7
 
0590b95
d55b56b
a4391a6
9965439
91bcc4e
 
9bbac2d
b4bd6e7
b6c69fc
121b79e
2e709f8
b4bd6e7
 
 
 
 
 
 
7926822
b4bd6e7
 
 
 
 
7926822
 
b4bd6e7
91bcc4e
2e709f8
d55b56b
77bb0dd
 
 
b4bd6e7
77bb0dd
 
 
 
b61209f
77bb0dd
b61209f
136c114
77bb0dd
b6c69fc
2bbc794
9bbac2d
77bb0dd
2e709f8
f32159a
2e709f8
 
 
3a4eb5d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import gradio as gr
from PIL import Image
from datetime import datetime
import pytz
from ocr_engine import extract_weight
from simple_salesforce import Salesforce
import base64
import os

# Salesforce credentials (for safety, you can later store these in environment variables)
SF_USERNAME = "[email protected]"
SF_PASSWORD = "autoweight@32"
SF_TOKEN = "UgiHKWT0aoZRX9gvTYDjAiRY"

# Connect to Salesforce
sf = Salesforce(username=SF_USERNAME, password=SF_PASSWORD, security_token=SF_TOKEN)

def process_image(image):
    if image is None:
        return "❌ No image provided", "", None, gr.update(visible=True)
    try:
        weight = extract_weight(image)
        ist = pytz.timezone('Asia/Kolkata')
        timestamp = datetime.now(ist).strftime("%Y-%m-%d %H:%M:%S IST")
        if not weight or "No valid" in weight:
            return "❌ Unable to detect. Try again with a clearer image.", "", image, gr.update(visible=True)

        # Save snapshot image to base64 (optional field, depends on usage)
        buffered_image = image.copy()
        buffered_image.save("snapshot.jpg")
        with open("snapshot.jpg", "rb") as img_file:
            snapshot_base64 = base64.b64encode(img_file.read()).decode('utf-8')

        # Create record in Salesforce
        sf.Weight_Log__c.create({
            "Captured_Weight__c": float(weight.replace("kg", "").strip()),
            "Captured_At__c": datetime.now(ist).isoformat(),
            "Snapshot_Image__c": snapshot_base64,
            "Device_ID__c": "DEVICE-001",   # Static or dynamic based on your design
            "Status__c": "Captured"
        })

        return weight, timestamp, image, gr.update(visible=False)
    except Exception as e:
        return f"Error: {str(e)}", "", None, gr.update(visible=True)

with gr.Blocks(css=".gr-button {background-color: #2e7d32 !important; color: white !important;}") as demo:
    gr.Markdown("""
    <h1 style='text-align: center; color: #2e7d32;'>πŸ“· Auto Weight Logger</h1>
    <p style='text-align: center;'>Upload or capture a digital weight image. Detects weight using AI OCR.</p>
    <hr style='border: 1px solid #ddd;'/>
    """)

    with gr.Row():
        image_input = gr.Image(type="pil", label="πŸ“ Upload or Capture Image")

    detect_btn = gr.Button("πŸš€ Detect Weight")

    with gr.Row():
        weight_out = gr.Textbox(label="πŸ“¦ Detected Weight", placeholder="e.g., 97.9 kg", show_copy_button=True)
        time_out = gr.Textbox(label="πŸ•’ Captured At (IST)", placeholder="e.g., 2025-07-01 12:00:00")

    snapshot = gr.Image(label="πŸ“Έ Snapshot Preview")
    retake_btn = gr.Button("πŸ” Retake / Try Again", visible=False)

    detect_btn.click(fn=process_image, inputs=image_input, outputs=[weight_out, time_out, snapshot, retake_btn])
    retake_btn.click(fn=lambda: ("", "", None, gr.update(visible=False)),
                     inputs=[], outputs=[weight_out, time_out, snapshot, retake_btn])

demo.launch()