File size: 3,514 Bytes
0590b95
d55b56b
 
9bbac2d
d55b56b
b4bd6e7
 
5066cf7
7926822
624d5ea
b4bd6e7
 
 
7926822
b4bd6e7
 
0590b95
d55b56b
a4391a6
9965439
91bcc4e
 
9bbac2d
b4bd6e7
624d5ea
b6c69fc
121b79e
2e709f8
5066cf7
 
 
b4bd6e7
5066cf7
 
b4bd6e7
 
624d5ea
e34e9af
7926822
 
5066cf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4bd6e7
91bcc4e
2e709f8
d55b56b
77bb0dd
 
 
5066cf7
77bb0dd
 
 
 
b61209f
77bb0dd
b61209f
136c114
77bb0dd
b6c69fc
2bbc794
9bbac2d
77bb0dd
2e709f8
f32159a
2e709f8
 
 
3a4eb5d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import gradio as gr
from PIL import Image
from datetime import datetime
import pytz
from ocr_engine import extract_weight
from simple_salesforce import Salesforce
import base64
import os

# Salesforce credentials
SF_USERNAME = "[email protected]"
SF_PASSWORD = "autoweight@32"
SF_TOKEN = "UgiHKWT0aoZRX9gvTYDjAiRY"

# Connect to Salesforce
sf = Salesforce(username=SF_USERNAME, password=SF_PASSWORD, security_token=SF_TOKEN)

def process_image(image):
    if image is None:
        return "❌ No image provided", "", None, gr.update(visible=True)
    try:
        weight = extract_weight(image)
        ist = pytz.timezone('Asia/Kolkata')
        timestamp = datetime.now(ist).strftime("%Y-%m-%d %H:%M:%S IST")

        if not weight or "No valid" in weight:
            return "❌ Unable to detect. Try again with a clearer image.", "", image, gr.update(visible=True)

        # Save image temporarily
        image_path = "snapshot.jpg"
        image.save(image_path)

        # Create Weight_Log__c record first
        record = sf.Weight_Log__c.create({
            "Captured_Weight__c": float(weight.replace("kg", "").strip()),
            "Captured_At__c": datetime.now(ist).isoformat(),
            "Device_ID__c": "DEVICE-001",
            "Status__c": "Confirmed"  # βœ… Must match picklist values
        })

        # Upload image as ContentVersion
        with open(image_path, "rb") as f:
            encoded_image = base64.b64encode(f.read()).decode("utf-8")

        content = sf.ContentVersion.create({
            "Title": f"Snapshot_{timestamp}",
            "PathOnClient": "snapshot.jpg",
            "VersionData": encoded_image
        })

        # Get ContentDocumentId
        content_id = sf.query(
            f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content['id']}'"
        )['records'][0]['ContentDocumentId']

        # Link file to Weight_Log__c record via ContentDocumentLink
        sf.ContentDocumentLink.create({
            "ContentDocumentId": content_id,
            "LinkedEntityId": record['id'],
            "ShareType": "V",
            "Visibility": "AllUsers"
        })

        return weight, timestamp, image, gr.update(visible=False)
    except Exception as e:
        return f"Error: {str(e)}", "", None, gr.update(visible=True)

with gr.Blocks(css=".gr-button {background-color: #2e7d32 !important; color: white !important;}") as demo:
    gr.Markdown("""
    <h1 style='text-align: center; color: #2e7d32;'>πŸ“· Auto Weight Logger</h1>
    <p style='text-align: center;'>Upload or capture a digital weight image. Detects weight using AI OCR and logs it into Salesforce.</p>
    <hr style='border: 1px solid #ddd;'/>
    """)

    with gr.Row():
        image_input = gr.Image(type="pil", label="πŸ“ Upload or Capture Image")

    detect_btn = gr.Button("πŸš€ Detect Weight")

    with gr.Row():
        weight_out = gr.Textbox(label="πŸ“¦ Detected Weight", placeholder="e.g., 97.9 kg", show_copy_button=True)
        time_out = gr.Textbox(label="πŸ•’ Captured At (IST)", placeholder="e.g., 2025-07-01 12:00:00")

    snapshot = gr.Image(label="πŸ“Έ Snapshot Preview")
    retake_btn = gr.Button("πŸ” Retake / Try Again", visible=False)

    detect_btn.click(fn=process_image, inputs=image_input, outputs=[weight_out, time_out, snapshot, retake_btn])
    retake_btn.click(fn=lambda: ("", "", None, gr.update(visible=False)),
                     inputs=[], outputs=[weight_out, time_out, snapshot, retake_btn])

demo.launch()