Spaces:
Running
Running
File size: 3,514 Bytes
0590b95 d55b56b 9bbac2d d55b56b b4bd6e7 5066cf7 7926822 624d5ea b4bd6e7 7926822 b4bd6e7 0590b95 d55b56b a4391a6 9965439 91bcc4e 9bbac2d b4bd6e7 624d5ea b6c69fc 121b79e 2e709f8 5066cf7 b4bd6e7 5066cf7 b4bd6e7 624d5ea e34e9af 7926822 5066cf7 b4bd6e7 91bcc4e 2e709f8 d55b56b 77bb0dd 5066cf7 77bb0dd b61209f 77bb0dd b61209f 136c114 77bb0dd b6c69fc 2bbc794 9bbac2d 77bb0dd 2e709f8 f32159a 2e709f8 3a4eb5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import gradio as gr
from PIL import Image
from datetime import datetime
import pytz
from ocr_engine import extract_weight
from simple_salesforce import Salesforce
import base64
import os
# Salesforce credentials
SF_USERNAME = "[email protected]"
SF_PASSWORD = "autoweight@32"
SF_TOKEN = "UgiHKWT0aoZRX9gvTYDjAiRY"
# Connect to Salesforce
sf = Salesforce(username=SF_USERNAME, password=SF_PASSWORD, security_token=SF_TOKEN)
def process_image(image):
if image is None:
return "β No image provided", "", None, gr.update(visible=True)
try:
weight = extract_weight(image)
ist = pytz.timezone('Asia/Kolkata')
timestamp = datetime.now(ist).strftime("%Y-%m-%d %H:%M:%S IST")
if not weight or "No valid" in weight:
return "β Unable to detect. Try again with a clearer image.", "", image, gr.update(visible=True)
# Save image temporarily
image_path = "snapshot.jpg"
image.save(image_path)
# Create Weight_Log__c record first
record = sf.Weight_Log__c.create({
"Captured_Weight__c": float(weight.replace("kg", "").strip()),
"Captured_At__c": datetime.now(ist).isoformat(),
"Device_ID__c": "DEVICE-001",
"Status__c": "Confirmed" # β
Must match picklist values
})
# Upload image as ContentVersion
with open(image_path, "rb") as f:
encoded_image = base64.b64encode(f.read()).decode("utf-8")
content = sf.ContentVersion.create({
"Title": f"Snapshot_{timestamp}",
"PathOnClient": "snapshot.jpg",
"VersionData": encoded_image
})
# Get ContentDocumentId
content_id = sf.query(
f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content['id']}'"
)['records'][0]['ContentDocumentId']
# Link file to Weight_Log__c record via ContentDocumentLink
sf.ContentDocumentLink.create({
"ContentDocumentId": content_id,
"LinkedEntityId": record['id'],
"ShareType": "V",
"Visibility": "AllUsers"
})
return weight, timestamp, image, gr.update(visible=False)
except Exception as e:
return f"Error: {str(e)}", "", None, gr.update(visible=True)
with gr.Blocks(css=".gr-button {background-color: #2e7d32 !important; color: white !important;}") as demo:
gr.Markdown("""
<h1 style='text-align: center; color: #2e7d32;'>π· Auto Weight Logger</h1>
<p style='text-align: center;'>Upload or capture a digital weight image. Detects weight using AI OCR and logs it into Salesforce.</p>
<hr style='border: 1px solid #ddd;'/>
""")
with gr.Row():
image_input = gr.Image(type="pil", label="π Upload or Capture Image")
detect_btn = gr.Button("π Detect Weight")
with gr.Row():
weight_out = gr.Textbox(label="π¦ Detected Weight", placeholder="e.g., 97.9 kg", show_copy_button=True)
time_out = gr.Textbox(label="π Captured At (IST)", placeholder="e.g., 2025-07-01 12:00:00")
snapshot = gr.Image(label="πΈ Snapshot Preview")
retake_btn = gr.Button("π Retake / Try Again", visible=False)
detect_btn.click(fn=process_image, inputs=image_input, outputs=[weight_out, time_out, snapshot, retake_btn])
retake_btn.click(fn=lambda: ("", "", None, gr.update(visible=False)),
inputs=[], outputs=[weight_out, time_out, snapshot, retake_btn])
demo.launch()
|