Spaces:
Running
Running
import gradio as gr | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import logging | |
from ocr_engine import extract_weight_from_image | |
from datetime import datetime | |
import pytz | |
import sys | |
# Set up logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[logging.StreamHandler(sys.stdout)]) | |
def process_image(img): | |
try: | |
# Convert Gradio image (PIL) to process | |
if img is None: | |
return "No image provided", 0.0, "", None | |
# Resize if > 5MB | |
img_bytes = img.tobytes() | |
size_mb = len(img_bytes) / (1024 * 1024) | |
if size_mb > 5: | |
scale = 0.9 | |
while size_mb > 5: | |
w, h = img.size | |
img = img.resize((int(w * scale), int(h * scale)), Image.Resampling.LANCZOS) | |
img_bytes = img.tobytes() | |
size_mb = len(img_bytes) / (1024 * 1024) | |
scale *= 0.9 | |
logging.info(f"Resized image to {size_mb:.2f} MB") | |
# Extract weight | |
weight, confidence, unit = extract_weight_from_image(img) | |
# Return results | |
return f"{weight} {unit} (Confidence: {confidence:.2f}%)", f"Processed at {datetime.now(pytz.timezone('Asia/Kolkata')).strftime('%d-%m-%Y %I:%M:%S %p IST')}", img | |
except Exception as e: | |
logging.error(f"Error in process_image: {str(e)}") | |
return f"Error: {str(e)}", "", None | |
# Gradio interface | |
with gr.Blocks(title="Auto Weight Logger") as demo: | |
gr.Markdown(""" | |
# 📷 Auto Weight Logger — OCR-Based Smart Scale Reader | |
This app detects weight from uploaded or captured images of digital balance displays. Optimized for 7-segment displays and various formats, it extracts numeric weights with high accuracy. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(source="upload", tool="select", type="pil", label="Upload Weight Display Image") | |
webcam_input = gr.Image(source="webcam", type="pil", label="Or Capture with Webcam") | |
submit_btn = gr.Button("Detect Weight") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Detected Weight", interactive=False) | |
timestamp_text = gr.Textbox(label="Processed At", interactive=False) | |
output_image = gr.Image(label="Processed Image") | |
submit_btn.click( | |
fn=process_image, | |
inputs=[image_input], | |
outputs=[output_text, timestamp_text, output_image] | |
) | |
webcam_input.change( | |
fn=process_image, | |
inputs=[webcam_input], | |
outputs=[output_text, timestamp_text, output_image] | |
) | |
demo.launch() |