Spaces:
Running
Running
from transformers import DonutProcessor, VisionEncoderDecoderModel | |
from PIL import Image | |
import re | |
import torch | |
# Load processor + model | |
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") | |
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") | |
def extract_weight(image: Image.Image) -> str: | |
image = image.convert("RGB") | |
pixel_values = processor(image, return_tensors="pt").pixel_values | |
# Generate text prediction | |
outputs = model.generate(pixel_values, max_length=512) | |
decoded = processor.batch_decode(outputs, skip_special_tokens=True)[0] | |
# Clean & extract weight | |
cleaned = decoded.lower().replace(" ", "") | |
match = re.search(r"(\d+(\.\d+)?)", cleaned) | |
weight = match.group(1) if match else None | |
# Detect unit | |
if any(u in cleaned for u in ["kg", "kgs", "kilogram", "kilo"]): | |
unit = "kg" | |
elif any(u in cleaned for u in ["g", "gram", "grams"]): | |
unit = "grams" | |
else: | |
unit = "kg" if weight and float(weight) >= 5 else "grams" | |
return f"{weight} {unit}" if weight else "No valid weight detected" | |