Spaces:
Running
Running
Update ocr_engine.py
Browse files- ocr_engine.py +3 -5
ocr_engine.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
2 |
from PIL import Image
|
3 |
import re
|
4 |
-
import torch
|
5 |
|
6 |
-
# Load processor
|
7 |
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
8 |
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
9 |
|
@@ -11,16 +10,15 @@ def extract_weight(image: Image.Image) -> str:
|
|
11 |
image = image.convert("RGB")
|
12 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
13 |
|
14 |
-
# Generate text prediction
|
15 |
outputs = model.generate(pixel_values, max_length=512)
|
16 |
decoded = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
17 |
|
18 |
-
#
|
19 |
cleaned = decoded.lower().replace(" ", "")
|
20 |
match = re.search(r"(\d+(\.\d+)?)", cleaned)
|
21 |
weight = match.group(1) if match else None
|
22 |
|
23 |
-
#
|
24 |
if any(u in cleaned for u in ["kg", "kgs", "kilogram", "kilo"]):
|
25 |
unit = "kg"
|
26 |
elif any(u in cleaned for u in ["g", "gram", "grams"]):
|
|
|
1 |
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
2 |
from PIL import Image
|
3 |
import re
|
|
|
4 |
|
5 |
+
# Load OCR processor and model (pretrained on receipts, good for 7-segment)
|
6 |
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
7 |
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
8 |
|
|
|
10 |
image = image.convert("RGB")
|
11 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
12 |
|
|
|
13 |
outputs = model.generate(pixel_values, max_length=512)
|
14 |
decoded = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
15 |
|
16 |
+
# Extract weight number
|
17 |
cleaned = decoded.lower().replace(" ", "")
|
18 |
match = re.search(r"(\d+(\.\d+)?)", cleaned)
|
19 |
weight = match.group(1) if match else None
|
20 |
|
21 |
+
# Smart unit detection
|
22 |
if any(u in cleaned for u in ["kg", "kgs", "kilogram", "kilo"]):
|
23 |
unit = "kg"
|
24 |
elif any(u in cleaned for u in ["g", "gram", "grams"]):
|