Spaces:
Running
Running
Update ocr_engine.py
Browse files- ocr_engine.py +32 -24
ocr_engine.py
CHANGED
@@ -1,28 +1,36 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import
|
4 |
-
from PIL import Image
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
blurred = cv2.GaussianBlur(gray, (3, 3), 0)
|
10 |
-
_, thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
11 |
-
return thresh
|
12 |
|
13 |
-
def extract_weight(
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
2 |
+
from PIL import Image, ImageEnhance
|
3 |
+
import re
|
|
|
4 |
|
5 |
+
# Load TrOCR model
|
6 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
7 |
+
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
|
|
|
|
|
|
8 |
|
9 |
+
def extract_weight(image: Image.Image) -> str:
|
10 |
+
# Step 1: Preprocess image
|
11 |
+
image = image.convert("L") # grayscale
|
12 |
+
image = ImageEnhance.Contrast(image).enhance(2.0)
|
13 |
+
image = ImageEnhance.Sharpness(image).enhance(2.5)
|
14 |
+
image = image.convert("RGB")
|
15 |
|
16 |
+
# Step 2: Run Hugging Face OCR
|
17 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
18 |
+
generated_ids = model.generate(pixel_values, max_length=32)
|
19 |
+
full_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
20 |
|
21 |
+
print("OCR Output:", full_text)
|
22 |
+
|
23 |
+
# Step 3: Extract numeric weight
|
24 |
+
cleaned = full_text.lower().replace(" ", "")
|
25 |
+
match = re.search(r"(\d+(\.\d+)?)", cleaned)
|
26 |
+
weight = match.group(1) if match else None
|
27 |
+
|
28 |
+
# Step 4: Decide unit
|
29 |
+
if any(u in cleaned for u in ["kg", "kgs", "kilo"]):
|
30 |
+
unit = "kg"
|
31 |
+
elif any(u in cleaned for u in ["g", "gram", "grams"]):
|
32 |
+
unit = "grams"
|
33 |
+
else:
|
34 |
+
unit = "kg" if weight and float(weight) >= 20 else "grams"
|
35 |
+
|
36 |
+
return f"{weight} {unit}" if weight else "No valid weight detected"
|