Spaces:
Running
Running
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
from PIL import Image | |
import torch | |
import re | |
# Load TrOCR model and processor once | |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") | |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") | |
def extract_weight(image): | |
try: | |
# OCR Inference | |
pixel_values = processor(images=image, return_tensors="pt").pixel_values | |
generated_ids = model.generate(pixel_values) | |
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() | |
print("OCR Output:", text) | |
# Pattern to detect weight with optional decimal and unit (g or kg) | |
match = re.search(r'(\d{1,5}(?:\.\d{1,3})?)\s*(kg|g)', text.lower()) | |
if match: | |
value = match.group(1) | |
unit = match.group(2) | |
return f"{value} {unit}" | |
else: | |
return "No valid weight found" | |
except Exception as e: | |
return f"Error: {str(e)}" | |