Spaces:
Running
Running
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
from PIL import Image | |
import torch | |
import re | |
# Load model and processor | |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") | |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") | |
def clean_ocr_text(text): | |
print("[RAW OCR]", text) | |
text = text.replace(",", ".").replace("s", "5").replace("o", "0").lower() | |
text = re.sub(r"[^\d\.kg]", "", text) | |
print("[CLEANED OCR]", text) | |
return text | |
def extract_weight(image): | |
try: | |
pixel_values = processor(images=image, return_tensors="pt").pixel_values | |
generated_ids = model.generate(pixel_values) | |
raw_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() | |
cleaned = clean_ocr_text(raw_text) | |
# First try with unit | |
match = re.search(r'(\d{1,5}(?:\.\d{1,3})?)\s*(kg|g)', cleaned) | |
if match: | |
return f"{match.group(1)} {match.group(2)}" | |
# Fallback: only number, assume grams | |
fallback = re.search(r'(\d{1,5}(?:\.\d{1,3})?)', cleaned) | |
if fallback: | |
return f"{fallback.group(1)} g" | |
return f"No valid weight found | OCR: {cleaned}" | |
except Exception as e: | |
return f"Error: {str(e)}" | |