logger2 / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
8348064 verified
raw
history blame
1.66 kB
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image, ImageFilter
import torch
import re
# Load TrOCR model
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
def clean_ocr_text(text):
print("[RAW OCR]", text)
# Fix common misreads
text = text.replace(",", ".").replace("s", "5").replace("o", "0").replace("O", "0")
text = re.sub(r"[^\d\.kg]", "", text.lower()) # Keep digits, dot, kg
print("[CLEANED OCR]", text)
return text
def preprocess_image(image):
# Enlarge + sharpen for better OCR
image = image.resize((image.width * 2, image.height * 2), Image.BICUBIC)
image = image.filter(ImageFilter.SHARPEN)
return image
def extract_weight(image):
try:
image = preprocess_image(image)
pixel_values = processor(images=image, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
raw_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
cleaned = clean_ocr_text(raw_text)
# Try matching decimal weight with unit
match = re.search(r'(\d{1,3}\.\d{1,3})\s*(kg|g)', cleaned)
if match:
return f"{match.group(1)} {match.group(2)}"
# Fallback: match only decimal number
fallback = re.search(r'(\d{1,3}\.\d{1,3})', cleaned)
if fallback:
return f"{fallback.group(1)} g" # Default to grams
return f"No valid weight found | OCR: {cleaned}"
except Exception as e:
return f"Error: {str(e)}"