Sanjayraju30 commited on
Commit
25cb585
·
verified ·
1 Parent(s): eb53689

Update ocr_engine.py

Browse files
Files changed (1) hide show
  1. ocr_engine.py +17 -7
ocr_engine.py CHANGED
@@ -3,21 +3,31 @@ from PIL import Image
3
  import torch
4
  import re
5
 
6
- # Load TrOCR model and processor
7
  processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
8
  model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
9
 
 
 
 
 
 
 
10
  def extract_weight(image):
11
  try:
12
- # Step 1: OCR with TrOCR
13
  pixel_values = processor(images=image, return_tensors="pt").pixel_values
14
  generated_ids = model.generate(pixel_values)
15
- text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
16
- print("OCR Output:", text)
 
 
 
 
17
 
18
- # Step 2: Search for weight pattern (g or kg)
19
- pattern = r'(\d{1,5}(?:\.\d{1,3})?)\s*(kg|g)' # e.g., 75.25 g, 98.78kg
20
- match = re.search(pattern, text.lower())
21
 
22
  if match:
23
  value = match.group(1)
 
3
  import torch
4
  import re
5
 
6
+ # Load TrOCR processor and model once
7
  processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
8
  model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
9
 
10
+ def clean_ocr_text(text):
11
+ # Fix common OCR mistakes
12
+ text = text.replace(",", ".") # comma to dot
13
+ text = re.sub(r"[^\d\.kg]", "", text.lower()) # keep only digits, dot, k, g
14
+ return text
15
+
16
  def extract_weight(image):
17
  try:
18
+ # TrOCR inference
19
  pixel_values = processor(images=image, return_tensors="pt").pixel_values
20
  generated_ids = model.generate(pixel_values)
21
+ raw_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
22
+ print("OCR Raw Output:", raw_text)
23
+
24
+ # Clean and normalize text
25
+ cleaned_text = clean_ocr_text(raw_text)
26
+ print("Cleaned OCR:", cleaned_text)
27
 
28
+ # Flexible regex to catch even minor issues (e.g., 52.2g, 98.7kg)
29
+ pattern = r'(\d{1,5}(?:\.\d{1,3})?)\s*(kg|g)'
30
+ match = re.search(pattern, cleaned_text)
31
 
32
  if match:
33
  value = match.group(1)