Spaces:
Running
Running
Update ocr_engine.py
Browse files- ocr_engine.py +16 -7
ocr_engine.py
CHANGED
@@ -1,28 +1,37 @@
|
|
1 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
2 |
-
from PIL import Image
|
3 |
import re
|
4 |
|
5 |
-
# Load
|
6 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
7 |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
8 |
|
9 |
def extract_weight(image: Image.Image) -> str:
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
generated_ids = model.generate(pixel_values, max_length=32)
|
13 |
full_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
14 |
|
15 |
-
#
|
16 |
cleaned = full_text.lower().replace(" ", "")
|
17 |
match = re.search(r"(\d+(\.\d+)?)", cleaned)
|
18 |
weight = match.group(1) if match else None
|
19 |
|
20 |
-
# Detect unit
|
21 |
if any(u in cleaned for u in ["kg", "kgs", "kilogram", "kilo"]):
|
22 |
unit = "kg"
|
23 |
elif any(u in cleaned for u in ["g", "gram", "grams"]):
|
24 |
unit = "grams"
|
25 |
else:
|
26 |
-
unit = "kg" if weight and float(weight) >=
|
27 |
|
28 |
return f"{weight} {unit}" if weight else ""
|
|
|
1 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
2 |
+
from PIL import Image, ImageEnhance
|
3 |
import re
|
4 |
|
5 |
+
# Load processor + model
|
6 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
7 |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
8 |
|
9 |
def extract_weight(image: Image.Image) -> str:
|
10 |
+
# Crop only display region (adjust based on your image format)
|
11 |
+
width, height = image.size
|
12 |
+
display_area = image.crop((width * 0.35, height * 0.1, width * 0.65, height * 0.25)) # crop display center
|
13 |
+
|
14 |
+
# Enhance contrast & sharpness
|
15 |
+
display_area = display_area.convert("L") # grayscale
|
16 |
+
display_area = ImageEnhance.Contrast(display_area).enhance(2.0)
|
17 |
+
display_area = ImageEnhance.Sharpness(display_area).enhance(2.5)
|
18 |
+
display_area = display_area.convert("RGB")
|
19 |
+
|
20 |
+
# OCR
|
21 |
+
pixel_values = processor(images=display_area, return_tensors="pt").pixel_values
|
22 |
generated_ids = model.generate(pixel_values, max_length=32)
|
23 |
full_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
24 |
|
25 |
+
# Clean & parse
|
26 |
cleaned = full_text.lower().replace(" ", "")
|
27 |
match = re.search(r"(\d+(\.\d+)?)", cleaned)
|
28 |
weight = match.group(1) if match else None
|
29 |
|
|
|
30 |
if any(u in cleaned for u in ["kg", "kgs", "kilogram", "kilo"]):
|
31 |
unit = "kg"
|
32 |
elif any(u in cleaned for u in ["g", "gram", "grams"]):
|
33 |
unit = "grams"
|
34 |
else:
|
35 |
+
unit = "kg" if weight and float(weight) >= 20 else "grams"
|
36 |
|
37 |
return f"{weight} {unit}" if weight else ""
|