Spaces:
Running
Running
Update ocr_engine.py
Browse files- ocr_engine.py +10 -17
ocr_engine.py
CHANGED
@@ -3,37 +3,30 @@ from PIL import Image
|
|
3 |
import torch
|
4 |
import re
|
5 |
|
6 |
-
# Load TrOCR
|
7 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
8 |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
9 |
|
10 |
def clean_ocr_text(text):
|
11 |
-
|
12 |
-
text = text.replace(",", ".")
|
13 |
-
text = re.sub(r"[^\d\.kg]", "", text
|
|
|
14 |
return text
|
15 |
|
16 |
def extract_weight(image):
|
17 |
try:
|
18 |
-
# TrOCR inference
|
19 |
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
20 |
generated_ids = model.generate(pixel_values)
|
21 |
raw_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
22 |
-
print("OCR Raw Output:", raw_text)
|
23 |
|
24 |
-
|
25 |
-
cleaned_text = clean_ocr_text(raw_text)
|
26 |
-
print("Cleaned OCR:", cleaned_text)
|
27 |
-
|
28 |
-
# Flexible regex to catch even minor issues (e.g., 52.2g, 98.7kg)
|
29 |
-
pattern = r'(\d{1,5}(?:\.\d{1,3})?)\s*(kg|g)'
|
30 |
-
match = re.search(pattern, cleaned_text)
|
31 |
|
|
|
|
|
32 |
if match:
|
33 |
-
|
34 |
-
unit = match.group(2)
|
35 |
-
return f"{value} {unit}"
|
36 |
else:
|
37 |
-
return "No valid weight found"
|
38 |
except Exception as e:
|
39 |
return f"Error: {str(e)}"
|
|
|
3 |
import torch
|
4 |
import re
|
5 |
|
6 |
+
# Load TrOCR once
|
7 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
8 |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
9 |
|
10 |
def clean_ocr_text(text):
|
11 |
+
print("[RAW OCR]", text)
|
12 |
+
text = text.replace(",", ".").replace("s", "5").replace("o", "0").lower()
|
13 |
+
text = re.sub(r"[^\d\.kg]", "", text) # Keep only digits, dot, k, g
|
14 |
+
print("[CLEANED OCR]", text)
|
15 |
return text
|
16 |
|
17 |
def extract_weight(image):
|
18 |
try:
|
|
|
19 |
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
20 |
generated_ids = model.generate(pixel_values)
|
21 |
raw_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
|
|
22 |
|
23 |
+
cleaned = clean_ocr_text(raw_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Regex for weight
|
26 |
+
match = re.search(r'(\d{1,5}(?:\.\d{1,3})?)\s*(kg|g)', cleaned)
|
27 |
if match:
|
28 |
+
return f"{match.group(1)} {match.group(2)}"
|
|
|
|
|
29 |
else:
|
30 |
+
return f"No valid weight found | OCR: {cleaned}"
|
31 |
except Exception as e:
|
32 |
return f"Error: {str(e)}"
|