Spaces:
Running
Running
Update ocr_engine.py
Browse files- ocr_engine.py +21 -15
ocr_engine.py
CHANGED
@@ -3,42 +3,48 @@ from PIL import Image, ImageFilter
|
|
3 |
import torch
|
4 |
import re
|
5 |
|
6 |
-
# Load
|
7 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
8 |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
9 |
|
10 |
def clean_ocr_text(text):
|
11 |
print("[RAW OCR]", text)
|
12 |
-
# Fix common misreads
|
13 |
text = text.replace(",", ".").replace("s", "5").replace("o", "0").replace("O", "0")
|
14 |
-
text = re.sub(r"[^\d
|
15 |
print("[CLEANED OCR]", text)
|
16 |
return text
|
17 |
|
18 |
-
def
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
23 |
|
24 |
def extract_weight(image):
|
25 |
try:
|
26 |
-
image =
|
|
|
|
|
27 |
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
28 |
generated_ids = model.generate(pixel_values)
|
29 |
raw_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
30 |
|
31 |
cleaned = clean_ocr_text(raw_text)
|
32 |
|
33 |
-
# Try
|
34 |
-
match = re.search(r
|
35 |
if match:
|
36 |
return f"{match.group(1)} {match.group(2)}"
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
if
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
|
43 |
return f"No valid weight found | OCR: {cleaned}"
|
44 |
except Exception as e:
|
|
|
3 |
import torch
|
4 |
import re
|
5 |
|
6 |
+
# Load model
|
7 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
8 |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
9 |
|
10 |
def clean_ocr_text(text):
|
11 |
print("[RAW OCR]", text)
|
|
|
12 |
text = text.replace(",", ".").replace("s", "5").replace("o", "0").replace("O", "0")
|
13 |
+
text = re.sub(r"[^\d.kg]", "", text.lower()) # Keep digits, dots, and kg
|
14 |
print("[CLEANED OCR]", text)
|
15 |
return text
|
16 |
|
17 |
+
def restore_decimal(text):
|
18 |
+
if re.fullmatch(r"\d{5}", text):
|
19 |
+
return f"{text[:2]}.{text[2:]}"
|
20 |
+
elif re.fullmatch(r"\d{4}", text):
|
21 |
+
return f"{text[:2]}.{text[2:]}"
|
22 |
+
return text
|
23 |
|
24 |
def extract_weight(image):
|
25 |
try:
|
26 |
+
image = image.resize((image.width * 2, image.height * 2), Image.BICUBIC)
|
27 |
+
image = image.filter(ImageFilter.SHARPEN)
|
28 |
+
|
29 |
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
30 |
generated_ids = model.generate(pixel_values)
|
31 |
raw_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
32 |
|
33 |
cleaned = clean_ocr_text(raw_text)
|
34 |
|
35 |
+
# Try direct match: e.g., 52.25 kg or 75.0 g
|
36 |
+
match = re.search(r"(\d{1,3}\.\d{1,3})\s*(kg|g)", cleaned)
|
37 |
if match:
|
38 |
return f"{match.group(1)} {match.group(2)}"
|
39 |
|
40 |
+
# Try fallback: extract digits and manually guess decimal
|
41 |
+
fallback_match = re.search(r"(\d{4,5})", cleaned)
|
42 |
+
if fallback_match:
|
43 |
+
fallback_value = restore_decimal(fallback_match.group(1))
|
44 |
+
|
45 |
+
# Check for presence of unit hints in raw_text
|
46 |
+
unit = "kg" if "kg" in raw_text.lower() else "g"
|
47 |
+
return f"{fallback_value} {unit}"
|
48 |
|
49 |
return f"No valid weight found | OCR: {cleaned}"
|
50 |
except Exception as e:
|