from PIL import Image from transformers import AutoProcessor, VisionEncoderDecoderModel import re # Load model fine-tuned for 7-segment displays processor = AutoProcessor.from_pretrained("roboflow/ocr-7segment") model = VisionEncoderDecoderModel.from_pretrained("roboflow/ocr-7segment") def extract_weight(image: Image.Image) -> str: image = image.convert("RGB") pixel_values = processor(images=image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) full_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print("OCR Text:", full_text) # optional debug # Extract number (weight) match = re.search(r"(\d+(\.\d+)?)", full_text) weight = match.group(1) if match else None # Detect unit text_lower = full_text.lower().replace(" ", "") if any(u in text_lower for u in ["kg", "kgs", "kilogram", "kilo"]): unit = "kg" elif any(u in text_lower for u in ["g", "gram", "grams"]): unit = "grams" else: unit = "kg" if weight and float(weight) >= 5 else "grams" return f"{weight} {unit}" if weight else "No valid weight detected"