Spaces:
Runtime error
Runtime error
Create utils/detector.py
Browse files- utils/detector.py +29 -0
utils/detector.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
7 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
8 |
+
|
9 |
+
def detect_faults(image):
|
10 |
+
inputs = processor(images=image, return_tensors="pt")
|
11 |
+
outputs = model(**inputs)
|
12 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
13 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
14 |
+
|
15 |
+
intrusion_detected = any(label == 1 for label in results["labels"].tolist())
|
16 |
+
|
17 |
+
# Simulated thermal detection (average red channel > 200 = overheat)
|
18 |
+
red_mean = np.array(image)[:, :, 0].mean()
|
19 |
+
overheating = red_mean > 200
|
20 |
+
|
21 |
+
# Simulated shade (brightness < 100 on average = dusty/shaded)
|
22 |
+
brightness = np.array(image).mean()
|
23 |
+
dusty = brightness < 100
|
24 |
+
|
25 |
+
return {
|
26 |
+
"Intrusion Detected": intrusion_detected,
|
27 |
+
"Overheating Panel": overheating,
|
28 |
+
"Dust/Shade Fault": dusty
|
29 |
+
}
|