Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import cv2 | |
from paddleocr import PaddleOCR | |
from PIL import Image | |
import re | |
ocr = PaddleOCR(use_angle_cls=True, lang='en') | |
def preprocess_image(image): | |
img = np.array(image.convert("RGB")) | |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | |
_, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY) | |
return Image.fromarray(thresh) | |
def extract_weight_text(image): | |
results = ocr.ocr(np.array(image), cls=True) | |
for line in results[0]: | |
text = line[1][0] | |
match = re.search(r"\d+\.\d+", text) | |
if match: | |
return match.group() | |
return None | |
st.title("π¦ Auto Weight Logger") | |
uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"]) | |
camera_image = st.camera_input("Or Capture Image") | |
input_image = uploaded_file or camera_image | |
if input_image: | |
image = Image.open(input_image) | |
st.image(image, caption="Original Image", use_column_width=True) | |
processed_image = preprocess_image(image) | |
weight = extract_weight_text(processed_image) | |
if weight: | |
st.success(f"β Weight Detected: {weight} kg") | |
else: | |
st.error("β Weight not detected.") | |