Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,54 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
-
import seaborn as sns
|
5 |
|
6 |
-
# Sample data
|
7 |
data = {
|
8 |
"Country": ["India", "China", "USA", "Indonesia", "Brazil"],
|
9 |
-
"Population": [1400000000, 1410000000, 331000000, 273000000, 213000000]
|
|
|
|
|
10 |
}
|
11 |
df = pd.DataFrame(data)
|
12 |
-
df.set_index("Country", inplace=True)
|
13 |
-
|
14 |
-
# Heatmap function
|
15 |
-
def generate_heatmap(selected_countries):
|
16 |
-
filtered_df = df.loc[selected_countries]
|
17 |
-
normalized = filtered_df.copy()
|
18 |
-
normalized["Population"] = normalized["Population"] / 1e6 # Convert to millions
|
19 |
-
|
20 |
-
plt.figure(figsize=(6, 3))
|
21 |
-
sns.heatmap(normalized.T, annot=True, fmt=".1f", cmap="YlOrRd", cbar_kws={"label": "Population (in millions)"})
|
22 |
-
plt.title("π Population Heatmap")
|
23 |
-
plt.yticks(rotation=0)
|
24 |
-
plt.tight_layout()
|
25 |
-
return plt
|
26 |
|
27 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def generate_pie_chart(selected_countries):
|
29 |
-
filtered_df = df.
|
30 |
-
|
31 |
plt.figure(figsize=(5, 5))
|
32 |
-
plt.pie(filtered_df["Population"], labels=filtered_df
|
33 |
plt.title("π§© Population Distribution")
|
34 |
plt.tight_layout()
|
35 |
return plt
|
36 |
|
37 |
# Gradio App
|
38 |
with gr.Blocks() as demo:
|
39 |
-
gr.Markdown("## π World Population
|
40 |
-
selected = gr.CheckboxGroup(label="Select Countries", choices=df.
|
41 |
|
42 |
with gr.Row():
|
43 |
-
heatmap_output = gr.Plot(label="Heatmap")
|
44 |
piechart_output = gr.Plot(label="Pie Chart")
|
45 |
|
46 |
-
|
47 |
-
selected.change(fn=generate_heatmap, inputs=selected, outputs=heatmap_output)
|
48 |
selected.change(fn=generate_pie_chart, inputs=selected, outputs=piechart_output)
|
49 |
|
50 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
import matplotlib.pyplot as plt
|
|
|
5 |
|
6 |
+
# Sample data with coordinates (approximate)
|
7 |
data = {
|
8 |
"Country": ["India", "China", "USA", "Indonesia", "Brazil"],
|
9 |
+
"Population": [1400000000, 1410000000, 331000000, 273000000, 213000000],
|
10 |
+
"Latitude": [20.5937, 35.8617, 37.0902, -0.7893, -14.2350],
|
11 |
+
"Longitude": [78.9629, 104.1954, -95.7129, 113.9213, -51.9253]
|
12 |
}
|
13 |
df = pd.DataFrame(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Geo heatmap function
|
16 |
+
def generate_geo_heatmap(selected_countries):
|
17 |
+
filtered_df = df[df["Country"].isin(selected_countries)]
|
18 |
+
|
19 |
+
fig = px.density_mapbox(
|
20 |
+
filtered_df,
|
21 |
+
lat="Latitude",
|
22 |
+
lon="Longitude",
|
23 |
+
z="Population",
|
24 |
+
hover_name="Country",
|
25 |
+
radius=30,
|
26 |
+
center=dict(lat=20, lon=0),
|
27 |
+
zoom=1,
|
28 |
+
mapbox_style="carto-positron"
|
29 |
+
)
|
30 |
+
fig.update_layout(title="π World Population Heatmap (Globe Map)", height=500)
|
31 |
+
return fig
|
32 |
+
|
33 |
+
# Pie chart function (same as before)
|
34 |
def generate_pie_chart(selected_countries):
|
35 |
+
filtered_df = df[df["Country"].isin(selected_countries)]
|
|
|
36 |
plt.figure(figsize=(5, 5))
|
37 |
+
plt.pie(filtered_df["Population"], labels=filtered_df["Country"], autopct="%1.1f%%", startangle=90)
|
38 |
plt.title("π§© Population Distribution")
|
39 |
plt.tight_layout()
|
40 |
return plt
|
41 |
|
42 |
# Gradio App
|
43 |
with gr.Blocks() as demo:
|
44 |
+
gr.Markdown("## π World Population Heatmap and Pie Chart")
|
45 |
+
selected = gr.CheckboxGroup(label="Select Countries", choices=df["Country"].tolist(), value=["India", "China", "USA"])
|
46 |
|
47 |
with gr.Row():
|
48 |
+
heatmap_output = gr.Plot(label="World Heatmap (Map View)")
|
49 |
piechart_output = gr.Plot(label="Pie Chart")
|
50 |
|
51 |
+
selected.change(fn=generate_geo_heatmap, inputs=selected, outputs=heatmap_output)
|
|
|
52 |
selected.change(fn=generate_pie_chart, inputs=selected, outputs=piechart_output)
|
53 |
|
54 |
demo.launch()
|