Spaces:
Sleeping
Sleeping
File size: 9,729 Bytes
369659e b5732cc eb42d16 369659e 83a55c9 b5732cc e9cedca b5732cc e9cedca 369659e e9cedca 369659e eb42d16 369659e b5732cc 369659e b5732cc 369659e b5732cc 369659e b5732cc 369659e b5732cc 369659e b5732cc 369659e b5732cc 369659e b5732cc 369659e b5732cc 369659e 3d30297 46d44b1 ac138f5 46d44b1 369659e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import zipfile
import subprocess
def unzip_content():
try:
print("Attempting to unzip content using Python...")
with zipfile.ZipFile('./content.zip', 'r') as zip_ref:
zip_ref.extractall('.')
except Exception as e:
print(f"Python unzip failed: {str(e)}")
try:
print("Attempting to unzip content using system command...")
subprocess.run(['unzip', '-o', './content.zip'], check=True)
except Exception as e:
print(f"System unzip failed: {str(e)}")
raise Exception("Failed to unzip content using both methods")
print("Content successfully unzipped!")
import subprocess
import gradio as gr
import numpy as np
import torch
import torchvision
import torchvision.transforms
import torchvision.transforms.functional
import PIL
import matplotlib.pyplot as plt
import yaml
from omegaconf import OmegaConf
from CLIP import clip
import os
import sys
import tempfile
import io
from pathlib import Path
from PIL import Image
import cv2
import imageio
# Add taming transformers path
taming_path = os.path.join(os.getcwd(), 'taming-transformers')
sys.path.append(taming_path)
from taming.models.vqgan import VQModel
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def create_video(images_list, video_name='morphing_video.mp4'):
"""Create video from a list of image tensors"""
if not images_list:
print("No images provided.")
return None
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
video_writer = imageio.get_writer(temp_video.name, fps=10)
for img_tensor in images_list:
# Convert tensor to numpy array
img = img_tensor.cpu().numpy().transpose((1, 2, 0))
img = (img * 255).astype('uint8')
video_writer.append_data(img)
video_writer.close()
return temp_video.name
def save_from_tensors(tensor):
"""Process tensor and return the processed version"""
img = tensor.clone()
img = img.mul(255).byte()
img = img.cpu().numpy().transpose((1, 2, 0))
return img
def norm_data(data):
return (data.clip(-1, 1) + 1) / 2
def setup_clip_model():
model, _ = clip.load('ViT-B/32', jit=False)
model.eval().to(device)
return model
def setup_vqgan_model(config_path, checkpoint_path):
config = OmegaConf.load(config_path)
model = VQModel(**config.model.params)
state_dict = torch.load(checkpoint_path, map_location="cpu")["state_dict"]
model.load_state_dict(state_dict, strict=False)
return model.eval().to(device)
def generator(x, model):
x = model.post_quant_conv(x)
x = model.decoder(x)
return x
def encode_text(text, clip_model):
t = clip.tokenize(text).to(device)
return clip_model.encode_text(t).detach().clone()
def create_encoding(include, exclude, extras, clip_model):
include_enc = [encode_text(text, clip_model) for text in include]
exclude_enc = [encode_text(text, clip_model) for text in exclude]
extras_enc = [encode_text(text, clip_model) for text in extras]
return include_enc, exclude_enc, extras_enc
def create_crops(img, num_crops=32, size1=225, noise_factor=0.05):
aug_transform = torch.nn.Sequential(
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.RandomAffine(30, translate=(0.1, 0.1), fill=0)
).to(device)
p = size1 // 2
img = torch.nn.functional.pad(img, (p, p, p, p), mode='constant', value=0)
img = aug_transform(img)
crop_set = []
for _ in range(num_crops):
gap1 = int(torch.normal(1.2, .3, ()).clip(.43, 1.9) * size1)
offsetx = torch.randint(0, int(size1 * 2 - gap1), ())
offsety = torch.randint(0, int(size1 * 2 - gap1), ())
crop = img[:, :, offsetx:offsetx + gap1, offsety:offsety + gap1]
crop = torch.nn.functional.interpolate(crop, (224, 224), mode='bilinear', align_corners=True)
crop_set.append(crop)
img_crops = torch.cat(crop_set, 0)
randnormal = torch.randn_like(img_crops, requires_grad=False)
randstotal = torch.rand((img_crops.shape[0], 1, 1, 1)).to(device)
img_crops = img_crops + noise_factor * randstotal * randnormal
return img_crops
def optimize_result(params, prompt, vqgan_model, clip_model, w1, w2, extras_enc, exclude_enc):
alpha = 1
beta = 0.5
out = generator(params, vqgan_model)
out = norm_data(out)
out = create_crops(out)
out = torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711))(out)
img_enc = clip_model.encode_image(out)
final_enc = w1 * prompt + w2 * extras_enc[0]
final_text_include_enc = final_enc / final_enc.norm(dim=-1, keepdim=True)
final_text_exclude_enc = exclude_enc[0]
main_loss = torch.cosine_similarity(final_text_include_enc, img_enc, dim=-1)
penalize_loss = torch.cosine_similarity(final_text_exclude_enc, img_enc, dim=-1)
return -alpha * main_loss.mean() + beta * penalize_loss.mean()
def optimize(params, optimizer, prompt, vqgan_model, clip_model, w1, w2, extras_enc, exclude_enc):
loss = optimize_result(params, prompt, vqgan_model, clip_model, w1, w2, extras_enc, exclude_enc)
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss
def training_loop(params, optimizer, include_enc, exclude_enc, extras_enc, vqgan_model, clip_model, w1, w2,
total_iter=200, show_step=1):
res_img = []
res_z = []
for prompt in include_enc:
for it in range(total_iter):
loss = optimize(params, optimizer, prompt, vqgan_model, clip_model, w1, w2, extras_enc, exclude_enc)
if it >= 0 and it % show_step == 0:
with torch.no_grad():
generated = generator(params, vqgan_model)
new_img = norm_data(generated[0].to(device))
res_img.append(new_img)
res_z.append(params.clone().detach())
print(f"loss: {loss.item():.4f}\nno. of iteration: {it}")
torch.cuda.empty_cache()
return res_img, res_z
def generate_art(include_text, exclude_text, extras_text, num_iterations):
try:
# Process the input prompts
include = [x.strip() for x in include_text.split(',')]
exclude = [x.strip() for x in exclude_text.split(',')]
extras = [x.strip() for x in extras_text.split(',')]
w1, w2 = 1.0, 0.9
# Setup models
clip_model = setup_clip_model()
vqgan_model = setup_vqgan_model("./models/vqgan_imagenet_f16_16384/configs/model.yaml",
"./models/vqgan_imagenet_f16_16384/checkpoints/last.ckpt")
# Parameters
learning_rate = 0.1
batch_size = 1
wd = 0.1
size1, size2 = 225, 400
# Initialize parameters
initial_image = PIL.Image.open('./gradient1.png')
initial_image = initial_image.resize((size2, size1))
initial_image = torchvision.transforms.ToTensor()(initial_image).unsqueeze(0).to(device)
with torch.no_grad():
z, _, _ = vqgan_model.encode(initial_image)
params = torch.nn.Parameter(z).to(device)
optimizer = torch.optim.AdamW([params], lr=learning_rate, weight_decay=wd)
params.data = params.data * 0.6 + torch.randn_like(params.data) * 0.4
# Encode prompts
include_enc, exclude_enc, extras_enc = create_encoding(include, exclude, extras, clip_model)
# Run training loop
res_img, res_z = training_loop(params, optimizer, include_enc, exclude_enc, extras_enc,
vqgan_model, clip_model, w1, w2, total_iter=num_iterations)
# Create video directly from tensors
video_path = create_video(res_img)
return video_path
except Exception as e:
raise e
def gradio_interface(include_text, exclude_text, extras_text, num_iterations):
try:
video_path = generate_art(include_text, exclude_text, extras_text, int(num_iterations))
return video_path
except Exception as e:
return f"An error occurred: {str(e)}"
# Try to unzip content at startup
try:
unzip_content()
except Exception as e:
print(f"Warning: Could not unzip content: {str(e)}")
# Define and launch the Gradio app
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="Include Prompts (comma-separated)",
value="desert, heavy rain, cactus"),
gr.Textbox(label="Exclude Prompts (comma-separated)",
value="confusing, blurry"),
gr.Textbox(label="Extra Style Prompts (comma-separated)",
value="desert, clear, detailed, beautiful, good shape, detailed"),
gr.Number(label="Number of Iterations",
value=200, minimum=1, maximum=1000)
],
outputs=gr.Video(label="Generated Morphing Video", format="mp4", autoplay=True),
title="VQGAN-CLIP Art Generator",
css="allow",
allow_flagging="never",
description = """
Generate artistic videos using VQGAN-CLIP. Enter your prompts separated by commas and adjust the number of iterations. The model will generate a morphing video based on your inputs.
Note: This application requires GPU access. Please either:
1. Use the Colab notebook available at https://github.com/SanshruthR/VQGAN-CLIP
2. Clone this space and enable GPU in your personal copy.
""")
if __name__ == "__main__":
print("Checking GPU availability:", "GPU AVAILABLE" if torch.cuda.is_available() else "NO GPU FOUND")
iface.launch() |