Spaces:
Sleeping
Sleeping
File size: 19,161 Bytes
76bfb75 bddf29f 2d6a87c 2d48be5 7f91fc3 8cac918 7f91fc3 8cac918 7f91fc3 8cac918 7f91fc3 8cac918 7f91fc3 8cac918 7f91fc3 7e1f943 4119a04 7f91fc3 4119a04 61e6b62 443053b 8c3b0f0 39dbf03 8c3b0f0 8b497ae 8c3b0f0 7f8700c 8c3b0f0 39dbf03 8b497ae 8c3b0f0 35e172a 8c3b0f0 35e172a 8c3b0f0 35e172a 8c3b0f0 35e172a 2e7a421 35e172a 2e7a421 35e172a 2e7a421 0e7ae0f 2e7a421 0e7ae0f 35e172a ee949ff 2e7a421 35e172a 0e7ae0f 2e7a421 0e7ae0f 2e7a421 0e7ae0f 2e7a421 35e172a 0e7ae0f 2e7a421 ee949ff 35e172a 8c3b0f0 443053b 8c3b0f0 35e172a 8c3b0f0 35e172a 8c3b0f0 443053b bddf29f e4d07f2 443053b 61e6b62 3fca7f2 3d103e2 8b497ae 3d103e2 3fca7f2 3d103e2 443053b e4d07f2 8b497ae b187752 8b497ae bddf29f 8b497ae 1398651 8b497ae 1398651 8b497ae 21e8468 de38b62 bddf29f 99fe899 1398651 0b34e59 8d1b0ca 0b34e59 1bf26c9 4119a04 1bf26c9 4119a04 5c957ad 5946b43 81c73a1 de38b62 81c73a1 5946b43 4119a04 294c24c 4119a04 fa36f72 db05398 e9c524f 5c957ad 8c3b0f0 60cbd2f 5946b43 8c3b0f0 5c957ad 77698e2 7f91fc3 4119a04 d95655c 76bfb75 0b34e59 1446dbe 7e1f943 21e8468 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import gradio as gr
import pandas as pd
def data_pre_processing(file_responses):
# Financial Weights can be anything (ultimately the row-wise weights are aggregated and the corresponding fractions are obtained from that rows' total tax payed)
try: # Define the columns to be processed
# Developing Numeric Columns
# Convert columns to numeric and fill NaN values with 0
file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'], errors='coerce').fillna(0)
file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'], errors='coerce').fillna(0)
file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'], errors='coerce').fillna(0)
file_responses['Latest estimated Tax payment?'] = pd.to_numeric(file_responses['Latest estimated Tax payment?'], errors='coerce').fillna(0)
# Adding a new column 'TotalWeightageAllocated' by summing specific columns by their names
file_responses['TotalWeightageAllocated'] = file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] + file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] + file_responses['Personal_TaxDirection_3_TaxWeightageAllocated']
# Creating Datasets (we assume everything has been provided to us in English, or the translations have been done already)
# Renaming the datasets into similar column headings
initial_dataset_1 = file_responses.rename(columns={
'Personal_TaxDirection_1_Wish': 'Problem_Description',
'Personal_TaxDirection_1_GeographicalLocation': 'Geographical_Location',
'Personal_TaxDirection_1_TaxWeightageAllocated': 'Financial_Weight'
})[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]
initial_dataset_2 = file_responses.rename(columns={
'Personal_TaxDirection_2_Wish': 'Problem_Description',
'Personal_TaxDirection_2_GeographicalLocation': 'Geographical_Location',
'Personal_TaxDirection_2_TaxWeightageAllocated': 'Financial_Weight'
})[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]
initial_dataset_3 = file_responses.rename(columns={
'Personal_TaxDirection_3_Wish': 'Problem_Description',
'Personal_TaxDirection_3_GeographicalLocation': 'Geographical_Location',
'Personal_TaxDirection_3_TaxWeightageAllocated': 'Financial_Weight'
})[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]
# Calculating the actual TaxAmount to be allocated against each WISH (by overwriting the newly created columns)
initial_dataset_1['Financial_Weight'] = file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
initial_dataset_2['Financial_Weight'] = file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
initial_dataset_3['Financial_Weight'] = file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
# Removing useless rows
# Drop rows where Problem_Description is NaN or an empty string
initial_dataset_1 = initial_dataset_1.dropna(subset=['Problem_Description'], axis=0)
initial_dataset_2 = initial_dataset_2.dropna(subset=['Problem_Description'], axis=0)
initial_dataset_3 = initial_dataset_3.dropna(subset=['Problem_Description'], axis=0)
# Convert 'Problem_Description' column to string type
initial_dataset_1['Problem_Description'] = initial_dataset_1['Problem_Description'].astype(str)
initial_dataset_2['Problem_Description'] = initial_dataset_2['Problem_Description'].astype(str)
initial_dataset_3['Problem_Description'] = initial_dataset_3['Problem_Description'].astype(str)
# Merging the Datasets
# Vertically concatenating (merging) the 3 DataFrames
merged_dataset = pd.concat([initial_dataset_1, initial_dataset_2, initial_dataset_3], ignore_index=True)
# Different return can be used to check the processing
# return file_responses
return merged_dataset
except Exception as e:
return str(e)
import spacy
from transformers import AutoTokenizer, AutoModel
import torch
# Load SpaCy model
# Install the 'en_core_web_sm' model if it isn't already installed
try:
nlp = spacy.load('en_core_web_sm')
except OSError:
# Instead of this try~catch, we could also include this < https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.5.0/en_core_web_sm-3.5.0.tar.gz > in the requirements.txt to directly load it
from spacy.cli import download
download('en_core_web_sm')
nlp = spacy.load('en_core_web_sm')
# Load Hugging Face Transformers model
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
model = AutoModel.from_pretrained("sentence-transformers/all-mpnet-base-v2")
# def combined_text_processing(text):
# # Basic NLP processing using SpaCy
# doc = nlp(text)
# lemmatized_text = ' '.join([token.lemma_ for token in doc])
# # Advanced text representation using Hugging Face Transformers
# inputs = tokenizer(lemmatized_text, return_tensors="pt", truncation=False, padding=True)
# with torch.no_grad():
# outputs = model(**inputs)
# return outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
import re
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
# Download necessary NLTK data
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')
# def combined_text_processing(text):
# # Remove punctuation, numbers, URLs, and special characters
# text = re.sub(r'[^\w\s]', '', text) # Remove punctuation and special characters
# text = re.sub(r'\d+', '', text) # Remove numbers
# text = re.sub(r'http\S+', '', text) # Remove URLs
# # Tokenize and remove stopwords
# tokens = word_tokenize(text.lower()) # Convert to lowercase
# stop_words = set(stopwords.words('english'))
# tokens = [word for word in tokens if word not in stop_words]
# # Lemmatize tokens using SpaCy
# doc = nlp(' '.join(tokens))
# lemmatized_text = ' '.join([token.lemma_ for token in doc])
# # Apply Hugging Face Transformers
# inputs = tokenizer(lemmatized_text, return_tensors="pt", truncation=False, padding=True)
# with torch.no_grad():
# outputs = model(**inputs)
# return outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
def text_processing_for_domain(text):
# Text Cleaning
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\d+', '', text)
text = re.sub(r'http\S+', '', text) # Remove https URLs
text = re.sub(r'www\.\S+', '', text) # Remove www URLs
# Tokenize and remove stopwords
tokens = word_tokenize(text.lower())
stop_words = set(stopwords.words('english'))
custom_stopwords = {'example', 'another'} # Add custom stopwords
tokens = [word for word in tokens if word not in stop_words and word not in custom_stopwords]
# NER - Remove named entities
doc = nlp(' '.join(tokens))
tokens = [token.text for token in doc if not token.ent_type_]
# POS Tagging (optional)
pos_tags = nltk.pos_tag(tokens)
tokens = [word for word, pos in pos_tags if pos in ['NN', 'NNS']] # Filter nouns
# Lemmatize tokens using SpaCy
doc = nlp(' '.join(tokens))
lemmatized_text = ' '.join([token.lemma_ for token in doc])
# Apply Hugging Face Transformers
inputs = tokenizer(lemmatized_text, return_tensors="pt", truncation=False, padding=True)
with torch.no_grad():
outputs = model(**inputs)
return outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
# # 2. Clustering from ChatGPT
# # Libraries: scikit-learn, sentence-transformers
# # Use sentence embeddings and clustering algorithms to group similar project proposals.
# from bertopic import BERTopic
# def perform_clustering(texts, n_clusters):
# topic_model = BERTopic(n_topics=n_clusters)
# topics, _ = topic_model.fit_transform(texts)
# return topics, topic_model
# # Clustering function call
# clustered_df, cluster_centers = clustering(processed_df)
# Method 1: Sentence Transformers + KMeans
# # 2. Clustering: from Claude
# # Use BERTopic for advanced topic modeling and clustering.
# from bertopic import BERTopic
# def perform_clustering(texts, n_clusters):
# topic_model = BERTopic(n_topics=n_clusters)
# topics, _ = topic_model.fit_transform(texts)
# return topics, topic_model
# # Clustering function call
# problem_clusters, problem_model = perform_clustering(processed_df['Problem_Description'], n_clusters=10)
# location_clusters, location_model = perform_clustering(processed_df['Geographical_Location'], n_clusters=5)
# After this Method 2: BERTopic function, the following need to be done:
# processed_df['Problem_Cluster'] = problem_clusters
# 2. Meta AI Function: Sentence Transformers + Hierarchical Clustering + Silhouette Analysis
# Now this also includes:
# Topic Modeling using BERTopic: Integrated BERTopic to extract representative words for each cluster.
# Cluster Visualization: Added a simple visualization to display the top words in each cluster.
# Hyperparameter Tuning: Include a parameter to adjust the number of top words to display for each cluster.
from sentence_transformers import SentenceTransformer
from sklearn.cluster import AgglomerativeClustering, KMeans
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import silhouette_score
from bertopic import BERTopic
from collections import Counter
import numpy as np
def extract_problem_domains(df,
text_column='Problem_Description',
cluster_range=(10, 50),
top_words=17,
# method='sentence_transformers'
method='tfidf_kmeans'
):
if method == 'sentence_transformers':
# Sentence Transformers approach
model = SentenceTransformer('all-mpnet-base-v2')
embeddings = model.encode(df[text_column].tolist())
# Perform hierarchical clustering with Silhouette Analysis
silhouette_scores = []
for n_clusters in range(cluster_range[0], cluster_range[1] + 1):
clustering = AgglomerativeClustering(n_clusters=n_clusters)
cluster_labels = clustering.fit_predict(embeddings)
silhouette_avg = silhouette_score(embeddings, cluster_labels)
silhouette_scores.append(silhouette_avg)
# Determine the optimal number of clusters
optimal_n_clusters = cluster_range[0] + silhouette_scores.index(max(silhouette_scores))
# Perform clustering with the optimal number of clusters
clustering = AgglomerativeClustering(n_clusters=optimal_n_clusters)
cluster_labels = clustering.fit_predict(embeddings)
elif method == 'tfidf_kmeans':
# TF-IDF Vectorization and K-Means approach
vectorizer = TfidfVectorizer(stop_words='english', max_features=5000)
X = vectorizer.fit_transform(df[text_column])
# Perform K-Means clustering with Silhouette Analysis
silhouette_scores = []
for n_clusters in range(cluster_range[0], cluster_range[1] + 1):
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
cluster_labels = kmeans.fit_predict(X)
silhouette_avg = silhouette_score(X, cluster_labels)
silhouette_scores.append(silhouette_avg)
# Determine the optimal number of clusters
optimal_n_clusters = cluster_range[0] + silhouette_scores.index(max(silhouette_scores))
# Perform final clustering with optimal number of clusters
kmeans = KMeans(n_clusters=optimal_n_clusters, random_state=42)
cluster_labels = kmeans.fit_predict(X)
# # BERTopic approach (commented out)
# topic_model = BERTopic()
# topics, _ = topic_model.fit_transform(df[text_column].tolist())
# topic_model.reduce_topics(df[text_column].tolist(), nr_topics=optimal_n_clusters)
# cluster_labels = topics
# Get representative words for each cluster
if method == 'sentence_transformers':
cluster_representations = {}
for i in range(optimal_n_clusters):
cluster_words = df.loc[cluster_labels == i, text_column].str.cat(sep=' ').split()
cluster_representations[i] = [word for word, _ in Counter(cluster_words).most_common(top_words)]
elif method == 'tfidf_kmeans':
feature_names = vectorizer.get_feature_names_out()
cluster_representations = {}
for i in range(optimal_n_clusters):
center = kmeans.cluster_centers_[i]
top_word_indices = center.argsort()[-top_words:][::-1]
top_words = [feature_names[index] for index in top_word_indices]
cluster_representations[i] = top_words
# Map cluster labels to representative words
df["Problem_Cluster"] = cluster_labels
df['Problem_Category_Words'] = [cluster_representations[label] for label in cluster_labels]
return df, optimal_n_clusters
# Usage
# clustered_df, optimal_n_clusters = optimal_Problem_clustering(processed_df)
# print(f'Optimal number of clusters: {optimal_n_clusters}')
def nlp_pipeline(original_df):
# Data Preprocessing
processed_df = data_pre_processing(original_df) # merged_dataset
# Starting the Pipeline for Domain Extraction
# Apply the text_processing_for_domain function to the DataFrame
processed_df['Processed_ProblemDescription_forDomainExtraction'] = processed_df['Problem_Description'].apply(text_processing_for_domain)
# Domain Clustering
domain_df, optimal_n_clusters = extract_problem_domains(processed_df)
# problem_clusters, problem_model = perform_clustering(processed_df['Problem_Description'], n_clusters=10)
# location_clusters, location_model = perform_clustering(processed_df['Geographical_Location'], n_clusters=5)
# return processed_df
return domain_df
def process_excel(file):
try:
# Ensure the file path is correct
file_path = file.name if hasattr(file, 'name') else file
# Read the Excel file
df = pd.read_excel(file_path)
# Process the DataFrame
result_df = nlp_pipeline(df)
# output_file = "Output_ProjectProposals.xlsx"
output_file = "Output_Proposals.xlsx"
result_df.to_excel(output_file, index=False)
return output_file # Return the processed DataFrame as Excel file
except Exception as e:
# return str(e) # Return the error message
error_message = f"Error processing file: {str(e)}"
print(error_message) # Log the error
return error_message # Return the error message to the user
# example_files = ['#TaxDirection (Responses)_BasicExample.xlsx',
# '#TaxDirection (Responses)_IntermediateExample.xlsx',
# '#TaxDirection (Responses)_UltimateExample.xlsx'
# ]
example_files = ['a.xlsx',]
import random
a_random_object = random.choice(["⇒", "↣", "↠", "→"])
# Define the Gradio interface
interface = gr.Interface(
fn=process_excel, # The function to process the uploaded file
inputs=gr.File(type="filepath", label="Upload Excel File here. \t Be sure to check that the column headings in your upload are the same as in the Example files below. \t (Otherwise there will be Error during the processing)"), # File upload input
examples=example_files, # Add the example files
# outputs=gr.File(label="Download Processed Excel File"), # File download output
outputs=gr.File(label="Download the processed Excel File containing the ** Project Proposals ** for each Location~Problem paired combination"), # File download output
# title="Excel File Uploader",
# title="Upload Excel file containing #TaxDirections → Download HyperLocal Project Proposals\n",
title = (
"<p style='font-weight: bold; font-size: 25px; text-align: center;'>"
"<span style='color: blue;'>Upload Excel file containing #TaxDirections</span> "
# "<span style='color: brown; font-size: 35px;'>→ </span>"
# "<span style='color: brown; font-size: 35px;'>⇒ ↣ ↠ </span>"
"<span style='color: brown; font-size: 35px;'> " +a_random_object +" </span>"
"<span style='color: green;'>Download HyperLocal Project Proposals</span>"
"</p>\n"
),
description=(
"<p style='font-size: 12px; color: gray; text-align: center'>This tool allows for the systematic evaluation and proposal of solutions tailored to specific location-problem pairs, ensuring efficient resource allocation and project planning. For more information, visit <a href='https://santanban.github.io/TaxDirection/' target='_blank'>#TaxDirection weblink</a>.</p>"
"<p style='font-weight: bold; font-size: 16px; color: blue;'>Upload an Excel file to process and download the result or use the Example files:</p>"
"<p style='font-weight: bold; font-size: 15px; color: blue;'>(click on any of them to directly process the file and Download the result)</p>"
"<p style='font-weight: bold; font-size: 14px; color: green; text-align: right;'>Processed output contains a Project Proposal for each Location~Problem paired combination (i.e. each cell).</p>"
"<p style='font-weight: bold; font-size: 13px; color: green; text-align: right;'>Corresponding Budget Allocation and estimated Project Completion Time are provided in different sheets.</p>"
"<p style='font-size: 12px; color: gray; text-align: center'>Note: The example files provided above are for demonstration purposes. Feel free to upload your own Excel files to see the results. If you have any questions, refer to the documentation-links or contact <a href='https://www.change.org/p/democracy-evolution-ensuring-humanity-s-eternal-existence-through-taxdirection' target='_blank'>support</a>.</p>"
) # Solid description with right-aligned second sentence
)
# Launch the interface
if __name__ == "__main__":
interface.launch() |