Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -359,8 +359,12 @@ def extract_problem_domains(df,
|
|
359 |
console_messages.append(f"Center shape: {center.shape}, type: {type(center)}")
|
360 |
|
361 |
if isinstance(center, np.ndarray) and center.ndim == 1:
|
|
|
362 |
top_word_indices = center.argsort()[-top_words:][::-1]
|
363 |
# top_word_indices = center.argsort()[-top_words:][::-1].tolist()
|
|
|
|
|
|
|
364 |
|
365 |
console_messages.append(f"Top word indices for cluster {i}: {top_word_indices}")
|
366 |
top_words = [feature_names[index] for index in top_word_indices]
|
|
|
359 |
console_messages.append(f"Center shape: {center.shape}, type: {type(center)}")
|
360 |
|
361 |
if isinstance(center, np.ndarray) and center.ndim == 1:
|
362 |
+
# Ensure center.argsort() returns a numpy array
|
363 |
top_word_indices = center.argsort()[-top_words:][::-1]
|
364 |
# top_word_indices = center.argsort()[-top_words:][::-1].tolist()
|
365 |
+
|
366 |
+
if isinstance(top_word_indices, np.ndarray):
|
367 |
+
top_word_indices = top_word_indices.tolist()
|
368 |
|
369 |
console_messages.append(f"Top word indices for cluster {i}: {top_word_indices}")
|
370 |
top_words = [feature_names[index] for index in top_word_indices]
|