SantanuBanerjee commited on
Commit
61b7e96
·
verified ·
1 Parent(s): df711e3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -229,8 +229,8 @@ def extract_problem_domains(df,
229
  text_column='Problem_Description',
230
  cluster_range=(10, 50),
231
  top_words=17,
232
- # method='sentence_transformers'
233
- method='tfidf_kmeans'
234
  ):
235
 
236
 
@@ -339,8 +339,8 @@ def nlp_pipeline(original_df, console_messages):
339
  # Domain Clustering
340
  try:
341
  domain_df, optimal_n_clusters = extract_problem_domains(processed_df)
342
- print(f"Optimal clusters: {optimal_clusters}")
343
- print(result_df.head())
344
  # console_messages.append(f"Optimal clusters: {optimal_n_clusters}")
345
 
346
  console_messages.append("NLP pipeline completed.")
@@ -348,8 +348,8 @@ def nlp_pipeline(original_df, console_messages):
348
  except Exception as e:
349
  # print(f"Error in extract_problem_domains: {e}")
350
  console_messages.append(f"Error in extract_problem_domains: {str(e)}")
351
- # return processed_df, console_messages
352
- return domain_df, console_messages
353
 
354
 
355
  # problem_clusters, problem_model = perform_clustering(processed_df['Problem_Description'], n_clusters=10)
 
229
  text_column='Problem_Description',
230
  cluster_range=(10, 50),
231
  top_words=17,
232
+ method='sentence_transformers'
233
+ # method='tfidf_kmeans'
234
  ):
235
 
236
 
 
339
  # Domain Clustering
340
  try:
341
  domain_df, optimal_n_clusters = extract_problem_domains(processed_df)
342
+ # print(f"Optimal clusters: {optimal_clusters}")
343
+ # print(result_df.head())
344
  # console_messages.append(f"Optimal clusters: {optimal_n_clusters}")
345
 
346
  console_messages.append("NLP pipeline completed.")
 
348
  except Exception as e:
349
  # print(f"Error in extract_problem_domains: {e}")
350
  console_messages.append(f"Error in extract_problem_domains: {str(e)}")
351
+ return processed_df, console_messages
352
+ # return domain_df, console_messages
353
 
354
 
355
  # problem_clusters, problem_model = perform_clustering(processed_df['Problem_Description'], n_clusters=10)