Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -248,58 +248,36 @@ def extract_problem_domains(df,
|
|
248 |
|
249 |
|
250 |
|
251 |
-
import spacy
|
252 |
-
from geopy.geocoders import Nominatim
|
253 |
-
from geopy.exc import GeocoderTimedOut, GeocoderUnavailable
|
254 |
-
import pandas as pd
|
255 |
|
256 |
-
nlp = spacy.load('en_core_web_sm')
|
257 |
-
geolocator = Nominatim(user_agent="my_agent")
|
258 |
|
259 |
-
|
260 |
-
|
|
|
|
|
261 |
doc = nlp(text)
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
})
|
286 |
-
except (GeocoderTimedOut, GeocoderUnavailable):
|
287 |
-
print(f"Geocoding failed for {loc}")
|
288 |
-
# Add the location without coordinates
|
289 |
-
geocoded_locations.append({
|
290 |
-
'name': loc,
|
291 |
-
'latitude': None,
|
292 |
-
'longitude': None,
|
293 |
-
'country': None
|
294 |
-
})
|
295 |
-
|
296 |
-
return geocoded_locations
|
297 |
-
|
298 |
-
def text_processing_for_location(row):
|
299 |
-
locations = extract_and_geocode_locations(row['Problem_Description'], row['Geographical_Location'])
|
300 |
-
location_text = ' '.join([loc['name'] for loc in locations])
|
301 |
-
processed_text = Lemmatize_text(location_text)
|
302 |
-
return processed_text, locations
|
303 |
|
304 |
def extract_location_clusters(df,
|
305 |
text_column='Processed_LocationText_forClustering',
|
@@ -355,86 +333,6 @@ def extract_location_clusters(df,
|
|
355 |
|
356 |
|
357 |
|
358 |
-
# def Extract_Location(text):
|
359 |
-
# doc = nlp(text)
|
360 |
-
# locations = [ent.text for ent in doc.ents if ent.label_ in ['GPE', 'LOC']]
|
361 |
-
# return ' '.join(locations)
|
362 |
-
|
363 |
-
# def text_processing_for_location(text):
|
364 |
-
# # Extract locations
|
365 |
-
# locations_text = Extract_Location(text)
|
366 |
-
|
367 |
-
# # Perform further text cleaning if necessary
|
368 |
-
# processed_locations_text = Lemmatize_text(locations_text)
|
369 |
-
|
370 |
-
# # Remove special characters, digits, and punctuation
|
371 |
-
# processed_locations_text = re.sub(r'[^a-zA-Z\s]', '', processed_locations_text)
|
372 |
-
|
373 |
-
# # Tokenize and remove stopwords
|
374 |
-
# tokens = word_tokenize(processed_locations_text.lower())
|
375 |
-
# stop_words = set(stopwords.words('english'))
|
376 |
-
# tokens = [word for word in tokens if word not in stop_words]
|
377 |
-
|
378 |
-
# # Join location words into a single string
|
379 |
-
# final_locations_text = ' '.join(tokens)
|
380 |
-
|
381 |
-
# return final_locations_text if final_locations_text else "India"
|
382 |
-
|
383 |
-
|
384 |
-
# def extract_location_clusters(df,
|
385 |
-
# text_column='Processed_LocationText_forClustering',
|
386 |
-
# cluster_range=(3, 10),
|
387 |
-
# top_words=5):
|
388 |
-
# console_messages.append("Extracting Location Clusters...")
|
389 |
-
|
390 |
-
# # Sentence Transformers approach for embeddings
|
391 |
-
# model = SentenceTransformer('all-mpnet-base-v2')
|
392 |
-
# embeddings = model.encode(df[text_column].tolist())
|
393 |
-
|
394 |
-
# # Perform hierarchical clustering with Silhouette Analysis
|
395 |
-
# silhouette_scores = []
|
396 |
-
# for n_clusters in range(cluster_range[0], cluster_range[1] + 1):
|
397 |
-
# clustering = AgglomerativeClustering(n_clusters=n_clusters)
|
398 |
-
# cluster_labels = clustering.fit_predict(embeddings)
|
399 |
-
# silhouette_avg = silhouette_score(embeddings, cluster_labels)
|
400 |
-
# silhouette_scores.append(silhouette_avg)
|
401 |
-
|
402 |
-
# # Determine the optimal number of clusters
|
403 |
-
# optimal_n_clusters = cluster_range[0] + silhouette_scores.index(max(silhouette_scores))
|
404 |
-
|
405 |
-
# # Perform clustering with the optimal number of clusters
|
406 |
-
# clustering = AgglomerativeClustering(n_clusters=optimal_n_clusters)
|
407 |
-
# cluster_labels = clustering.fit_predict(embeddings)
|
408 |
-
|
409 |
-
# # Get representative words for each cluster
|
410 |
-
# cluster_representations = {}
|
411 |
-
# for i in range(optimal_n_clusters):
|
412 |
-
# cluster_words = df.loc[cluster_labels == i, text_column].str.cat(sep=' ').split()
|
413 |
-
# cluster_representations[i] = [word for word, _ in Counter(cluster_words).most_common(top_words)]
|
414 |
-
|
415 |
-
# # Map cluster labels to representative words
|
416 |
-
# df["Location_Cluster"] = cluster_labels
|
417 |
-
# df['Location_Category_Words'] = [cluster_representations[label] for label in cluster_labels]
|
418 |
-
|
419 |
-
# console_messages.append("Location Clustering completed.")
|
420 |
-
# return df, optimal_n_clusters
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
|
439 |
|
440 |
def nlp_pipeline(original_df):
|
@@ -519,14 +417,16 @@ def process_excel(file):
|
|
519 |
|
520 |
|
521 |
|
|
|
|
|
|
|
|
|
|
|
522 |
# example_files = ['#TaxDirection (Responses)_BasicExample.xlsx',
|
523 |
# '#TaxDirection (Responses)_IntermediateExample.xlsx',
|
524 |
-
#
|
525 |
-
# ]
|
526 |
|
527 |
-
example_files = ['#TaxDirection (Responses)_BasicExample.xlsx',
|
528 |
-
'#TaxDirection (Responses)_IntermediateExample.xlsx',
|
529 |
-
]
|
530 |
|
531 |
|
532 |
import random
|
|
|
248 |
|
249 |
|
250 |
|
|
|
|
|
|
|
|
|
251 |
|
|
|
|
|
252 |
|
253 |
+
|
254 |
+
|
255 |
+
|
256 |
+
def Extract_Location(text):
|
257 |
doc = nlp(text)
|
258 |
+
locations = [ent.text for ent in doc.ents if ent.label_ in ['GPE', 'LOC']]
|
259 |
+
return ' '.join(locations)
|
260 |
+
|
261 |
+
def text_processing_for_location(text):
|
262 |
+
# Extract locations
|
263 |
+
locations_text = Extract_Location(text)
|
264 |
+
|
265 |
+
# Perform further text cleaning if necessary
|
266 |
+
processed_locations_text = Lemmatize_text(locations_text)
|
267 |
+
|
268 |
+
# Remove special characters, digits, and punctuation
|
269 |
+
processed_locations_text = re.sub(r'[^a-zA-Z\s]', '', processed_locations_text)
|
270 |
+
|
271 |
+
# Tokenize and remove stopwords
|
272 |
+
tokens = word_tokenize(processed_locations_text.lower())
|
273 |
+
stop_words = set(stopwords.words('english'))
|
274 |
+
tokens = [word for word in tokens if word not in stop_words]
|
275 |
+
|
276 |
+
# Join location words into a single string
|
277 |
+
final_locations_text = ' '.join(tokens)
|
278 |
+
|
279 |
+
return final_locations_text if final_locations_text else "India"
|
280 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
def extract_location_clusters(df,
|
283 |
text_column='Processed_LocationText_forClustering',
|
|
|
333 |
|
334 |
|
335 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
|
338 |
def nlp_pipeline(original_df):
|
|
|
417 |
|
418 |
|
419 |
|
420 |
+
example_files = ['#TaxDirection (Responses)_BasicExample.xlsx',
|
421 |
+
'#TaxDirection (Responses)_IntermediateExample.xlsx',
|
422 |
+
'#TaxDirection (Responses)_UltimateExample.xlsx'
|
423 |
+
]
|
424 |
+
|
425 |
# example_files = ['#TaxDirection (Responses)_BasicExample.xlsx',
|
426 |
# '#TaxDirection (Responses)_IntermediateExample.xlsx',
|
427 |
+
# ]
|
|
|
428 |
|
429 |
+
# example_files = ['#TaxDirection (Responses)_BasicExample.xlsx',]
|
|
|
|
|
430 |
|
431 |
|
432 |
import random
|