Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -104,17 +104,6 @@ except OSError:
|
|
104 |
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
|
105 |
model = AutoModel.from_pretrained("sentence-transformers/all-mpnet-base-v2")
|
106 |
|
107 |
-
# def combined_text_processing(text):
|
108 |
-
# # Basic NLP processing using SpaCy
|
109 |
-
# doc = nlp(text)
|
110 |
-
# lemmatized_text = ' '.join([token.lemma_ for token in doc])
|
111 |
-
|
112 |
-
# # Advanced text representation using Hugging Face Transformers
|
113 |
-
# inputs = tokenizer(lemmatized_text, return_tensors="pt", truncation=False, padding=True)
|
114 |
-
# with torch.no_grad():
|
115 |
-
# outputs = model(**inputs)
|
116 |
-
|
117 |
-
# return outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
118 |
|
119 |
|
120 |
|
@@ -130,29 +119,6 @@ nltk.download('averaged_perceptron_tagger')
|
|
130 |
|
131 |
|
132 |
|
133 |
-
# def combined_text_processing(text):
|
134 |
-
# # Remove punctuation, numbers, URLs, and special characters
|
135 |
-
# text = re.sub(r'[^\w\s]', '', text) # Remove punctuation and special characters
|
136 |
-
# text = re.sub(r'\d+', '', text) # Remove numbers
|
137 |
-
# text = re.sub(r'http\S+', '', text) # Remove URLs
|
138 |
-
|
139 |
-
# # Tokenize and remove stopwords
|
140 |
-
# tokens = word_tokenize(text.lower()) # Convert to lowercase
|
141 |
-
# stop_words = set(stopwords.words('english'))
|
142 |
-
# tokens = [word for word in tokens if word not in stop_words]
|
143 |
-
|
144 |
-
# # Lemmatize tokens using SpaCy
|
145 |
-
# doc = nlp(' '.join(tokens))
|
146 |
-
# lemmatized_text = ' '.join([token.lemma_ for token in doc])
|
147 |
-
|
148 |
-
# # Apply Hugging Face Transformers
|
149 |
-
# inputs = tokenizer(lemmatized_text, return_tensors="pt", truncation=False, padding=True)
|
150 |
-
# with torch.no_grad():
|
151 |
-
# outputs = model(**inputs)
|
152 |
-
|
153 |
-
# return outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
154 |
-
|
155 |
-
|
156 |
import numpy as np
|
157 |
import sentencepiece as sp
|
158 |
from transformers import pipeline
|
@@ -223,297 +189,56 @@ def text_processing_for_domain(text):
|
|
223 |
|
224 |
|
225 |
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
# # 2. Clustering from ChatGPT
|
231 |
-
# # Libraries: scikit-learn, sentence-transformers
|
232 |
-
# # Use sentence embeddings and clustering algorithms to group similar project proposals.
|
233 |
-
# from bertopic import BERTopic
|
234 |
-
# def perform_clustering(texts, n_clusters):
|
235 |
-
# topic_model = BERTopic(n_topics=n_clusters)
|
236 |
-
# topics, _ = topic_model.fit_transform(texts)
|
237 |
-
# return topics, topic_model
|
238 |
-
# # Clustering function call
|
239 |
-
# clustered_df, cluster_centers = clustering(processed_df)
|
240 |
-
# Method 1: Sentence Transformers + KMeans
|
241 |
-
|
242 |
-
# # 2. Clustering: from Claude
|
243 |
-
# # Use BERTopic for advanced topic modeling and clustering.
|
244 |
-
# from bertopic import BERTopic
|
245 |
-
# def perform_clustering(texts, n_clusters):
|
246 |
-
# topic_model = BERTopic(n_topics=n_clusters)
|
247 |
-
# topics, _ = topic_model.fit_transform(texts)
|
248 |
-
# return topics, topic_model
|
249 |
-
# # Clustering function call
|
250 |
-
# problem_clusters, problem_model = perform_clustering(processed_df['Problem_Description'], n_clusters=10)
|
251 |
-
# location_clusters, location_model = perform_clustering(processed_df['Geographical_Location'], n_clusters=5)
|
252 |
-
# After this Method 2: BERTopic function, the following need to be done:
|
253 |
-
# processed_df['Problem_Cluster'] = problem_clusters
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
# 2. Meta AI Function: Sentence Transformers + Hierarchical Clustering + Silhouette Analysis
|
258 |
-
# Now this also includes:
|
259 |
-
# Topic Modeling using BERTopic: Integrated BERTopic to extract representative words for each cluster.
|
260 |
-
# Cluster Visualization: Added a simple visualization to display the top words in each cluster.
|
261 |
-
# Hyperparameter Tuning: Include a parameter to adjust the number of top words to display for each cluster.
|
262 |
-
|
263 |
-
|
264 |
-
# From here Sanban
|
265 |
-
# from sentence_transformers import SentenceTransformer
|
266 |
-
# from sklearn.cluster import AgglomerativeClustering, KMeans
|
267 |
-
# from sklearn.feature_extraction.text import TfidfVectorizer
|
268 |
-
# from sklearn.metrics import silhouette_score
|
269 |
-
# from bertopic import BERTopic
|
270 |
-
# from collections import Counter
|
271 |
-
|
272 |
-
|
273 |
-
# def extract_problem_domains(df,
|
274 |
-
# text_column='Processed_ProblemDescription_forDomainExtraction',
|
275 |
-
# # text_column='Problem_Description',
|
276 |
-
# cluster_range=(5, 15),
|
277 |
-
# top_words=10,
|
278 |
-
# # method='sentence_transformers'
|
279 |
-
# method='tfidf_kmeans'
|
280 |
-
# ):
|
281 |
-
|
282 |
-
|
283 |
-
# console_messages.append("Extracting Problem Domains...")
|
284 |
-
|
285 |
-
# if method == 'sentence_transformers':
|
286 |
-
# # Sentence Transformers approach
|
287 |
-
# model = SentenceTransformer('all-mpnet-base-v2')
|
288 |
-
# embeddings = model.encode(df[text_column].tolist())
|
289 |
-
|
290 |
-
# # Perform hierarchical clustering with Silhouette Analysis
|
291 |
-
# silhouette_scores = []
|
292 |
-
# for n_clusters in range(cluster_range[0], cluster_range[1] + 1):
|
293 |
-
# clustering = AgglomerativeClustering(n_clusters=n_clusters)
|
294 |
-
# cluster_labels = clustering.fit_predict(embeddings)
|
295 |
-
# silhouette_avg = silhouette_score(embeddings, cluster_labels)
|
296 |
-
# silhouette_scores.append(silhouette_avg)
|
297 |
-
|
298 |
-
# # Determine the optimal number of clusters
|
299 |
-
# optimal_n_clusters = cluster_range[0] + silhouette_scores.index(max(silhouette_scores))
|
300 |
-
|
301 |
-
# # Perform clustering with the optimal number of clusters
|
302 |
-
# clustering = AgglomerativeClustering(n_clusters=optimal_n_clusters)
|
303 |
-
# cluster_labels = clustering.fit_predict(embeddings)
|
304 |
-
|
305 |
-
# elif method == 'tfidf_kmeans':
|
306 |
-
# # TF-IDF Vectorization and K-Means approach
|
307 |
-
# vectorizer = TfidfVectorizer(stop_words='english', max_features=3000)
|
308 |
-
# X = vectorizer.fit_transform(df[text_column])
|
309 |
-
|
310 |
-
# # Perform K-Means clustering with Silhouette Analysis
|
311 |
-
# silhouette_scores = []
|
312 |
-
# for n_clusters in range(cluster_range[0], cluster_range[1] + 1):
|
313 |
-
# kmeans = KMeans(n_clusters=n_clusters)#, random_state=42)
|
314 |
-
# cluster_labels = kmeans.fit_predict(X)
|
315 |
-
# silhouette_avg = silhouette_score(X, cluster_labels)
|
316 |
-
# silhouette_scores.append(silhouette_avg)
|
317 |
-
|
318 |
-
# # Determine the optimal number of clusters
|
319 |
-
# optimal_n_clusters = cluster_range[0] + silhouette_scores.index(max(silhouette_scores))
|
320 |
-
|
321 |
-
# # Perform final clustering with optimal number of clusters
|
322 |
-
# kmeans = KMeans(n_clusters=optimal_n_clusters) #, random_state=42)
|
323 |
-
# cluster_labels = kmeans.fit_predict(X)
|
324 |
-
|
325 |
-
# # # BERTopic approach (commented out)
|
326 |
-
# console_messages.append("BERT is currently commented...")
|
327 |
-
# # topic_model = BERTopic()
|
328 |
-
# # topics, _ = topic_model.fit_transform(df[text_column].tolist())
|
329 |
-
# # topic_model.reduce_topics(df[text_column].tolist(), nr_topics=optimal_n_clusters)
|
330 |
-
# # cluster_labels = topics
|
331 |
-
|
332 |
-
# # Get representative words for each cluster
|
333 |
-
# if method == 'sentence_transformers':
|
334 |
-
# cluster_representations = {}
|
335 |
-
# for i in range(optimal_n_clusters):
|
336 |
-
# cluster_words = df.loc[cluster_labels == i, text_column].str.cat(sep=' ').split()
|
337 |
-
# cluster_representations[i] = [word for word, _ in Counter(cluster_words).most_common(top_words)]
|
338 |
-
# elif method == 'tfidf_kmeans':
|
339 |
-
# feature_names = vectorizer.get_feature_names_out()
|
340 |
-
# cluster_representations = {}
|
341 |
-
# for i in range(optimal_n_clusters):
|
342 |
-
# # center = kmeans.cluster_centers_[i]
|
343 |
-
|
344 |
-
# # # print(f"top_words: {top_words}, type: {type(top_words)}")
|
345 |
-
# # # print(f"center.argsort(): {center.argsort()}, type: {type(center.argsort())}")
|
346 |
-
|
347 |
-
# # console_messages.append(f"top_words: {top_words}, type: {type(top_words)}")
|
348 |
-
# # console_messages.append(f"center.argsort(): {center.argsort()}, type: {type(center.argsort())}")
|
349 |
-
|
350 |
-
# # # top_word_indices = center.argsort()[-top_words:][::-1]
|
351 |
-
# # top_word_indices = center.argsort()[-top_words:][::-1].tolist() # Indexes of top words
|
352 |
-
|
353 |
-
# # top_words = [feature_names[index] for index in top_word_indices]
|
354 |
-
# # cluster_representations[i] = top_words
|
355 |
-
|
356 |
-
# try:
|
357 |
-
# center = kmeans.cluster_centers_[i]
|
358 |
-
# console_messages.append(f"Processing cluster {i}")
|
359 |
-
# console_messages.append(f"Center shape: {center.shape}, type: {type(center)}")
|
360 |
-
|
361 |
-
# if not isinstance(center, np.ndarray):
|
362 |
-
# center = np.array(center)
|
363 |
-
|
364 |
-
# # Remove NaN values
|
365 |
-
# center = center[~np.isnan(center)]
|
366 |
-
|
367 |
-
# sorted_indices = np.array(center.argsort())
|
368 |
-
|
369 |
-
# top_word_indices = sorted_indices[-top_words:][::-1]
|
370 |
-
|
371 |
-
# # Check for valid indices
|
372 |
-
# if np.any(top_word_indices < 0) or np.any(top_word_indices >= len(feature_names)):
|
373 |
-
# console_messages.append(f"Invalid top word indices for cluster {i}")
|
374 |
-
# continue
|
375 |
-
|
376 |
-
# top_words = [feature_names[index] for index in top_word_indices]
|
377 |
-
# console_messages.append(f"Top words: {top_words}")
|
378 |
-
# cluster_representations[i] = top_words
|
379 |
-
|
380 |
-
# except Exception as e:
|
381 |
-
# console_messages.append(f"Error processing cluster {i}: {str(e)}")
|
382 |
-
# console_messages.append(f"Center: {center}")
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
# console_messages.append(f"Number of clusters: {optimal_n_clusters}")
|
387 |
-
# console_messages.append(f"Sample cluster words: {cluster_representations[0][:5]}...")
|
388 |
-
|
389 |
-
# # Map cluster labels to representative words
|
390 |
-
# df["Problem_Cluster"] = cluster_labels
|
391 |
-
# df['Problem_Category_Words'] = [cluster_representations[label] for label in cluster_labels]
|
392 |
-
|
393 |
-
# # console_messages.append("Returning from Problem Domain Extraction function.")
|
394 |
-
# console_messages.append("Problem Domain Extraction completed.")
|
395 |
-
# return df, optimal_n_clusters
|
396 |
-
# Till here sanban
|
397 |
-
|
398 |
-
|
399 |
from sentence_transformers import SentenceTransformer
|
400 |
from sklearn.cluster import AgglomerativeClustering, KMeans
|
401 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
402 |
from sklearn.metrics import silhouette_score
|
403 |
from bertopic import BERTopic
|
404 |
from collections import Counter
|
405 |
-
|
406 |
|
407 |
def extract_problem_domains(df,
|
408 |
text_column='Processed_ProblemDescription_forDomainExtraction',
|
409 |
cluster_range=(5, 15),
|
410 |
top_words=10,
|
411 |
-
method='
|
412 |
):
|
413 |
-
|
414 |
console_messages.append("Extracting Problem Domains...")
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
clustering = AgglomerativeClustering(n_clusters=n_clusters)
|
425 |
-
cluster_labels = clustering.fit_predict(embeddings)
|
426 |
-
silhouette_avg = silhouette_score(embeddings, cluster_labels)
|
427 |
-
silhouette_scores.append(silhouette_avg)
|
428 |
-
|
429 |
-
# Determine the optimal number of clusters
|
430 |
-
optimal_n_clusters = cluster_range[0] + silhouette_scores.index(max(silhouette_scores))
|
431 |
-
|
432 |
-
# Perform clustering with the optimal number of clusters
|
433 |
-
clustering = AgglomerativeClustering(n_clusters=optimal_n_clusters)
|
434 |
cluster_labels = clustering.fit_predict(embeddings)
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
# Perform K-Means clustering with Silhouette Analysis
|
442 |
-
silhouette_scores = []
|
443 |
-
for n_clusters in range(cluster_range[0], cluster_range[1] + 1):
|
444 |
-
kmeans = KMeans(n_clusters=n_clusters)#, random_state=42)
|
445 |
-
cluster_labels = kmeans.fit_predict(X)
|
446 |
-
silhouette_avg = silhouette_score(X, cluster_labels)
|
447 |
-
silhouette_scores.append(silhouette_avg)
|
448 |
-
|
449 |
-
# Determine the optimal number of clusters
|
450 |
-
optimal_n_clusters = cluster_range[0] + silhouette_scores.index(max(silhouette_scores))
|
451 |
-
|
452 |
-
# Perform final clustering with optimal number of clusters
|
453 |
-
kmeans = KMeans(n_clusters=optimal_n_clusters) #, random_state=42)
|
454 |
-
cluster_labels = kmeans.fit_predict(X)
|
455 |
|
456 |
-
#
|
457 |
-
|
458 |
-
|
459 |
-
# topics, _ = topic_model.fit_transform(df[text_column].tolist())
|
460 |
-
# topic_model.reduce_topics(df[text_column].tolist(), nr_topics=optimal_n_clusters)
|
461 |
-
# cluster_labels = topics
|
462 |
|
463 |
# Get representative words for each cluster
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
cluster_representations[i] = [word for word, _ in Counter(cluster_words).most_common(top_words)]
|
469 |
-
elif method == 'tfidf_kmeans':
|
470 |
-
feature_names = vectorizer.get_feature_names_out()
|
471 |
-
cluster_representations = {}
|
472 |
-
for i in range(optimal_n_clusters):
|
473 |
-
try:
|
474 |
-
center = kmeans.cluster_centers_[i]
|
475 |
-
console_messages.append(f"Processing cluster {i}")
|
476 |
-
console_messages.append(f"Center shape: {center.shape}, type: {type(center)}")
|
477 |
-
|
478 |
-
if isinstance(center, list):
|
479 |
-
center = np.array(center)
|
480 |
-
|
481 |
-
# Remove NaN values
|
482 |
-
if np.any(np.isnan(center)):
|
483 |
-
center = np.nan_to_num(center)
|
484 |
-
|
485 |
-
sorted_indices = np.argsort(center)
|
486 |
-
|
487 |
-
top_word_indices = sorted_indices[-top_words:][::-1]
|
488 |
-
|
489 |
-
# Check for valid indices
|
490 |
-
if np.any(top_word_indices < 0) or np.any(top_word_indices >= len(feature_names)):
|
491 |
-
console_messages.append(f"Invalid top word indices for cluster {i}")
|
492 |
-
continue
|
493 |
-
|
494 |
-
top_words = [feature_names[index] for index in top_word_indices]
|
495 |
-
console_messages.append(f"Top words: {top_words}")
|
496 |
-
cluster_representations[i] = top_words
|
497 |
-
|
498 |
-
except Exception as e:
|
499 |
-
console_messages.append(f"Error processing cluster {i}: {str(e)}")
|
500 |
-
console_messages.append(f"Center: {center}")
|
501 |
-
|
502 |
-
console_messages.append(f"Number of clusters: {optimal_n_clusters}")
|
503 |
-
console_messages.append(f"Sample cluster words: {cluster_representations[0][:5]}...")
|
504 |
|
505 |
# Map cluster labels to representative words
|
506 |
df["Problem_Cluster"] = cluster_labels
|
507 |
df['Problem_Category_Words'] = [cluster_representations[label] for label in cluster_labels]
|
508 |
|
|
|
509 |
console_messages.append("Problem Domain Extraction completed.")
|
510 |
return df, optimal_n_clusters
|
511 |
|
512 |
|
513 |
-
# Usage
|
514 |
-
# clustered_df, optimal_n_clusters = optimal_Problem_clustering(processed_df)
|
515 |
-
# print(f'Optimal number of clusters: {optimal_n_clusters}')
|
516 |
-
|
517 |
|
518 |
|
519 |
|
|
|
104 |
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
|
105 |
model = AutoModel.from_pretrained("sentence-transformers/all-mpnet-base-v2")
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
|
109 |
|
|
|
119 |
|
120 |
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
import numpy as np
|
123 |
import sentencepiece as sp
|
124 |
from transformers import pipeline
|
|
|
189 |
|
190 |
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
from sentence_transformers import SentenceTransformer
|
193 |
from sklearn.cluster import AgglomerativeClustering, KMeans
|
194 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
195 |
from sklearn.metrics import silhouette_score
|
196 |
from bertopic import BERTopic
|
197 |
from collections import Counter
|
198 |
+
|
199 |
|
200 |
def extract_problem_domains(df,
|
201 |
text_column='Processed_ProblemDescription_forDomainExtraction',
|
202 |
cluster_range=(5, 15),
|
203 |
top_words=10,
|
204 |
+
method='sentence_transformers'
|
205 |
):
|
|
|
206 |
console_messages.append("Extracting Problem Domains...")
|
207 |
+
|
208 |
+
# Sentence Transformers approach
|
209 |
+
model = SentenceTransformer('all-mpnet-base-v2')
|
210 |
+
embeddings = model.encode(df[text_column].tolist())
|
211 |
+
|
212 |
+
# Perform hierarchical clustering with Silhouette Analysis
|
213 |
+
silhouette_scores = []
|
214 |
+
for n_clusters in range(cluster_range[0], cluster_range[1] + 1):
|
215 |
+
clustering = AgglomerativeClustering(n_clusters=n_clusters)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
cluster_labels = clustering.fit_predict(embeddings)
|
217 |
+
silhouette_avg = silhouette_score(embeddings, cluster_labels)
|
218 |
+
silhouette_scores.append(silhouette_avg)
|
219 |
+
|
220 |
+
# Determine the optimal number of clusters
|
221 |
+
optimal_n_clusters = cluster_range[0] + silhouette_scores.index(max(silhouette_scores))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
+
# Perform clustering with the optimal number of clusters
|
224 |
+
clustering = AgglomerativeClustering(n_clusters=optimal_n_clusters)
|
225 |
+
cluster_labels = clustering.fit_predict(embeddings)
|
|
|
|
|
|
|
226 |
|
227 |
# Get representative words for each cluster
|
228 |
+
cluster_representations = {}
|
229 |
+
for i in range(optimal_n_clusters):
|
230 |
+
cluster_words = df.loc[cluster_labels == i, text_column].str.cat(sep=' ').split()
|
231 |
+
cluster_representations[i] = [word for word, _ in Counter(cluster_words).most_common(top_words)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
# Map cluster labels to representative words
|
234 |
df["Problem_Cluster"] = cluster_labels
|
235 |
df['Problem_Category_Words'] = [cluster_representations[label] for label in cluster_labels]
|
236 |
|
237 |
+
# console_messages.append("Returning from Problem Domain Extraction function.")
|
238 |
console_messages.append("Problem Domain Extraction completed.")
|
239 |
return df, optimal_n_clusters
|
240 |
|
241 |
|
|
|
|
|
|
|
|
|
242 |
|
243 |
|
244 |
|