Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -359,6 +359,8 @@ def create_cluster_dataframes(processed_df):
|
|
359 |
from random import uniform
|
360 |
from transformers import GPTNeoForCausalLM, GPT2Tokenizer
|
361 |
def generate_project_proposal(prompt): # Generate the proposal
|
|
|
|
|
362 |
# model_Name = "EleutherAI/gpt-neo-2.7B"
|
363 |
# tempareCHUR = uniform(0.3,0.6)
|
364 |
|
@@ -369,16 +371,15 @@ def generate_project_proposal(prompt): # Generate the proposal
|
|
369 |
|
370 |
model = GPTNeoForCausalLM.from_pretrained(model_Name)
|
371 |
tokenizer = GPT2Tokenizer.from_pretrained(model_Name)
|
372 |
-
model_max_token_limit =
|
373 |
|
374 |
try:
|
375 |
# input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
376 |
# Truncate the prompt to fit within the model's input limits
|
377 |
# Adjust as per your model's limit
|
378 |
-
input_ids = tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length = int(model_max_token_limit/
|
379 |
-
|
380 |
-
|
381 |
print("Input IDs shape:", input_ids.shape)
|
|
|
382 |
|
383 |
pad_tokenId = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id # Padding with EOS token may always be great
|
384 |
attentionMask = input_ids.ne(pad_tokenId).long()
|
@@ -386,8 +387,8 @@ def generate_project_proposal(prompt): # Generate the proposal
|
|
386 |
# Generate the output
|
387 |
output = model.generate(
|
388 |
input_ids,
|
389 |
-
min_length = int(model_max_token_limit/
|
390 |
-
max_new_tokens = model_max_token_limit,
|
391 |
num_return_sequences=1,
|
392 |
no_repeat_ngram_size=2,
|
393 |
temperature=tempareCHUR,
|
@@ -396,25 +397,32 @@ def generate_project_proposal(prompt): # Generate the proposal
|
|
396 |
)
|
397 |
print("Output shape:", output.shape)
|
398 |
|
399 |
-
|
400 |
# Decode the output to text
|
401 |
-
|
|
|
402 |
|
403 |
-
|
404 |
-
|
405 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
|
407 |
proposal = generated_part.strip()
|
408 |
|
|
|
409 |
# if "Project Proposal:" in proposal:
|
410 |
# proposal = proposal.split("Project Proposal:", 1)[1].strip()
|
411 |
-
|
412 |
-
|
413 |
print("Generated Proposal: \n", proposal,"\n\n")
|
414 |
return proposal
|
415 |
except Exception as e:
|
416 |
print("Error generating proposal:", str(e))
|
417 |
-
return
|
418 |
|
419 |
|
420 |
|
@@ -759,8 +767,8 @@ def process_excel(file):
|
|
759 |
|
760 |
|
761 |
example_files = []
|
762 |
-
|
763 |
-
example_files.append('#TaxDirection (Responses)_IntermediateExample.xlsx')
|
764 |
# example_files.append('#TaxDirection (Responses)_UltimateExample.xlsx')
|
765 |
|
766 |
|
|
|
359 |
from random import uniform
|
360 |
from transformers import GPTNeoForCausalLM, GPT2Tokenizer
|
361 |
def generate_project_proposal(prompt): # Generate the proposal
|
362 |
+
default_proposal = "Hyper-local Sustainability Projects would lead to Longevity of the self and Prosperity of the community. Therefore UNSDGs coupled with Longevity initiatives should be focused upon."
|
363 |
+
|
364 |
# model_Name = "EleutherAI/gpt-neo-2.7B"
|
365 |
# tempareCHUR = uniform(0.3,0.6)
|
366 |
|
|
|
371 |
|
372 |
model = GPTNeoForCausalLM.from_pretrained(model_Name)
|
373 |
tokenizer = GPT2Tokenizer.from_pretrained(model_Name)
|
374 |
+
model_max_token_limit = 1500 #2048
|
375 |
|
376 |
try:
|
377 |
# input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
378 |
# Truncate the prompt to fit within the model's input limits
|
379 |
# Adjust as per your model's limit
|
380 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length = int(2*model_max_token_limit/3) )
|
|
|
|
|
381 |
print("Input IDs shape:", input_ids.shape)
|
382 |
+
input_length = input_ids.shape[1] # Slice off the input part if the input length is known
|
383 |
|
384 |
pad_tokenId = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id # Padding with EOS token may always be great
|
385 |
attentionMask = input_ids.ne(pad_tokenId).long()
|
|
|
387 |
# Generate the output
|
388 |
output = model.generate(
|
389 |
input_ids,
|
390 |
+
min_length = int(model_max_token_limit/7), # minimum length of the generated output
|
391 |
+
max_new_tokens = int(model_max_token_limit/3),
|
392 |
num_return_sequences=1,
|
393 |
no_repeat_ngram_size=2,
|
394 |
temperature=tempareCHUR,
|
|
|
397 |
)
|
398 |
print("Output shape:", output.shape)
|
399 |
|
|
|
400 |
# Decode the output to text
|
401 |
+
full_returned_segment = tokenizer.decode(output[0], skip_special_tokens=True)
|
402 |
+
PP_in_fullReturn = "Project Proposal:" in full_returned_segment
|
403 |
|
404 |
+
if output is not None and output.shape[1] > 0:
|
405 |
+
# Decode the output
|
406 |
+
if output.shape[1] > input_length and PP_in_fullReturn:
|
407 |
+
generated_part = tokenizer.decode(output[0][input_length:], skip_special_tokens=True)
|
408 |
+
else:
|
409 |
+
generated_part = tokenizer.decode(output[0], skip_special_tokens=True)
|
410 |
+
else:
|
411 |
+
# Handle the error case, e.g., return an empty string or a default value
|
412 |
+
raise Exception("Error generating proposal: output is empty or None")
|
413 |
|
414 |
proposal = generated_part.strip()
|
415 |
|
416 |
+
|
417 |
# if "Project Proposal:" in proposal:
|
418 |
# proposal = proposal.split("Project Proposal:", 1)[1].strip()
|
419 |
+
|
420 |
+
|
421 |
print("Generated Proposal: \n", proposal,"\n\n")
|
422 |
return proposal
|
423 |
except Exception as e:
|
424 |
print("Error generating proposal:", str(e))
|
425 |
+
return default_proposal
|
426 |
|
427 |
|
428 |
|
|
|
767 |
|
768 |
|
769 |
example_files = []
|
770 |
+
example_files.append('#TaxDirection (Responses)_BasicExample.xlsx')
|
771 |
+
# example_files.append('#TaxDirection (Responses)_IntermediateExample.xlsx')
|
772 |
# example_files.append('#TaxDirection (Responses)_UltimateExample.xlsx')
|
773 |
|
774 |
|