Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -462,15 +462,15 @@ def nlp_pipeline(original_df):
|
|
462 |
# Create cluster dataframes
|
463 |
budget_cluster_df, problem_cluster_df = create_cluster_dataframes(processed_df)
|
464 |
|
465 |
-
return processed_df, budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters
|
466 |
|
467 |
-
# #
|
468 |
-
#
|
469 |
-
#
|
470 |
-
|
471 |
|
472 |
-
|
473 |
-
|
474 |
|
475 |
|
476 |
|
@@ -490,26 +490,22 @@ def process_excel(file):
|
|
490 |
try:
|
491 |
# Process the DataFrame
|
492 |
console_messages.append("Processing the DataFrame...")
|
493 |
-
|
494 |
-
processed_df, budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters = nlp_pipeline(df)
|
495 |
|
496 |
output_filename = "OutPut_PPs.xlsx"
|
497 |
with pd.ExcelWriter(output_filename) as writer:
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
|
504 |
budget_cluster_df.to_excel(writer, sheet_name='Financial_Weights')
|
|
|
505 |
processed_df.to_excel(writer, sheet_name='Input_Processed', index=False)
|
506 |
|
507 |
|
508 |
-
if isinstance(problem_cluster_df, pd.DataFrame):
|
509 |
-
problem_cluster_df.to_excel(writer, sheet_name='Problem_Descriptions')
|
510 |
-
else:
|
511 |
-
console_messages.append("Converting Location Clusters to df")
|
512 |
-
pd.DataFrame(problem_cluster_df).to_excel(writer, sheet_name='Problem_Descriptions', index=False)
|
513 |
|
514 |
# # Ensure location_clusters and problem_clusters are in DataFrame format
|
515 |
# if isinstance(location_clusters, pd.DataFrame):
|
|
|
462 |
# Create cluster dataframes
|
463 |
budget_cluster_df, problem_cluster_df = create_cluster_dataframes(processed_df)
|
464 |
|
465 |
+
# return processed_df, budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters
|
466 |
|
467 |
+
# # Generate project proposals
|
468 |
+
# location_clusters = dict(enumerate(processed_df['Location_Category_Words'].unique()))
|
469 |
+
# problem_clusters = dict(enumerate(processed_df['Problem_Category_Words'].unique()))
|
470 |
+
project_proposals = create_project_proposals(budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters)
|
471 |
|
472 |
+
console_messages.append("NLP pipeline completed.")
|
473 |
+
return processed_df, budget_cluster_df, problem_cluster_df, project_proposals, location_clusters, problem_clusters
|
474 |
|
475 |
|
476 |
|
|
|
490 |
try:
|
491 |
# Process the DataFrame
|
492 |
console_messages.append("Processing the DataFrame...")
|
493 |
+
processed_df, budget_cluster_df, problem_cluster_df, project_proposals, location_clusters, problem_clusters = nlp_pipeline(df)
|
494 |
+
# processed_df, budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters = nlp_pipeline(df)
|
495 |
|
496 |
output_filename = "OutPut_PPs.xlsx"
|
497 |
with pd.ExcelWriter(output_filename) as writer:
|
498 |
+
### Convert project_proposals dictionary to DataFrame
|
499 |
+
project_proposals_df = pd.DataFrame.from_dict(project_proposals, orient='index', columns=['Solutions Proposed'])
|
500 |
+
project_proposals_df.index.names = ['Location_Cluster', 'Problem_Cluster']
|
501 |
+
project_proposals_df.reset_index(inplace=True)
|
502 |
+
project_proposals_df.to_excel(writer, sheet_name='Project_Proposals', index=False)
|
503 |
|
504 |
budget_cluster_df.to_excel(writer, sheet_name='Financial_Weights')
|
505 |
+
problem_cluster_df.to_excel(writer, sheet_name='Problem_Descriptions')
|
506 |
processed_df.to_excel(writer, sheet_name='Input_Processed', index=False)
|
507 |
|
508 |
|
|
|
|
|
|
|
|
|
|
|
509 |
|
510 |
# # Ensure location_clusters and problem_clusters are in DataFrame format
|
511 |
# if isinstance(location_clusters, pd.DataFrame):
|