Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,30 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
def process_excel(file):
|
5 |
try:
|
6 |
# Ensure the file path is correct
|
7 |
file_path = file.name if hasattr(file, 'name') else file
|
8 |
# Read the Excel file
|
9 |
df = pd.read_excel(file_path)
|
|
|
10 |
# Perform any processing on the DataFrame here
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
except Exception as e:
|
13 |
return str(e) # Return the error message
|
14 |
|
@@ -24,3 +40,214 @@ interface = gr.Interface(
|
|
24 |
# Launch the interface
|
25 |
if __name__ == "__main__":
|
26 |
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
def nlp_pipeline(original_df):
|
9 |
+
original_df['Sum'] = df['a'] + df['b']
|
10 |
+
return original_df
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
def process_excel(file):
|
15 |
try:
|
16 |
# Ensure the file path is correct
|
17 |
file_path = file.name if hasattr(file, 'name') else file
|
18 |
# Read the Excel file
|
19 |
df = pd.read_excel(file_path)
|
20 |
+
|
21 |
# Perform any processing on the DataFrame here
|
22 |
+
# Example: adding a new column with the sum of two other columns
|
23 |
+
# df['Sum'] = df['Column1'] + df['Column2']
|
24 |
+
result_df = nlp_pipeline(original_df)
|
25 |
+
|
26 |
+
return result_df # Return the first few rows as an example
|
27 |
+
|
28 |
except Exception as e:
|
29 |
return str(e) # Return the error message
|
30 |
|
|
|
40 |
# Launch the interface
|
41 |
if __name__ == "__main__":
|
42 |
interface.launch()
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
# #!/usr/bin/env python
|
55 |
+
# # coding: utf-8
|
56 |
+
|
57 |
+
# import pandas as pd
|
58 |
+
# import string
|
59 |
+
# import nltk
|
60 |
+
# import seaborn as sns
|
61 |
+
# import matplotlib.pyplot as plt
|
62 |
+
# from nltk.corpus import stopwords
|
63 |
+
# from nltk.tokenize import word_tokenize
|
64 |
+
# from nltk.sentiment import SentimentIntensityAnalyzer
|
65 |
+
# from sklearn.feature_extraction.text import TfidfVectorizer
|
66 |
+
# from sklearn.cluster import KMeans
|
67 |
+
# from transformers import T5ForConditionalGeneration, T5Tokenizer
|
68 |
+
# from datasets import Dataset
|
69 |
+
|
70 |
+
# # Load the data
|
71 |
+
# file_responses = pd.read_excel("#TaxDirection (Responses).xlsx")
|
72 |
+
|
73 |
+
# # Process financial allocations
|
74 |
+
# def process_allocations(df, col_name):
|
75 |
+
# return pd.to_numeric(df[col_name], errors='coerce').fillna(0)
|
76 |
+
|
77 |
+
# columns_to_process = [
|
78 |
+
# '''Your financial allocation for Problem 1:
|
79 |
+
# Mention the percentage of your Tax Amount which you wish the Government would allocate through their annual budget, to implement a specific solution for your 1st problem.''',
|
80 |
+
# '''Your financial allocation for Problem 2:
|
81 |
+
# Mention the percentage of your Tax Amount which you wish the Government would allocate through their annual budget, to implement a solution specifically to your 2nd problem.''',
|
82 |
+
# '''Your financial allocation for Problem 3:
|
83 |
+
# Mention the percentage of your Tax Amount which you wish the Government would allocate through their annual budget, to implement a solution specifically to your 3rd problem.'''
|
84 |
+
# ]
|
85 |
+
|
86 |
+
# for col in columns_to_process:
|
87 |
+
# file_responses[col] = process_allocations(file_responses, col)
|
88 |
+
|
89 |
+
# file_responses['How much was your latest Tax payment (in U$D)?'] = pd.to_numeric(
|
90 |
+
# file_responses['How much was your latest Tax payment (in U$D)?'], errors='coerce').fillna(0)
|
91 |
+
|
92 |
+
# # Compute total allocation and financial weights
|
93 |
+
# file_responses['Total Allocation'] = file_responses[columns_to_process].apply(lambda x: x.clip(lower=10)).sum(axis=1)
|
94 |
+
|
95 |
+
# for i in range(1, 4):
|
96 |
+
# file_responses[f'Financial Token Weight for Problem {i}'] = (
|
97 |
+
# file_responses['How much was your latest Tax payment (in U$D)?'] *
|
98 |
+
# file_responses[columns_to_process[i - 1]] /
|
99 |
+
# file_responses['Total Allocation']
|
100 |
+
# )
|
101 |
+
|
102 |
+
# # Create initial datasets
|
103 |
+
# initial_datasets = []
|
104 |
+
# for i in range(1, 4):
|
105 |
+
# initial_datasets.append(
|
106 |
+
# file_responses[[f'''Describe Problem {i}:
|
107 |
+
# Enter the context of the problem.
|
108 |
+
# What are the difficulties you are facing personally or as a part of an organization?
|
109 |
+
# You may briefly propose a solution idea as well.''',
|
110 |
+
# f'''Problem {i}: Geographical Location :
|
111 |
+
# Where is the location you are facing this problem?
|
112 |
+
# You may mention the nearby geographical area of the proposed solution as:
|
113 |
+
# City/Town, State/Province, Country.''',
|
114 |
+
# f'Financial Token Weight for Problem {i}']]
|
115 |
+
# )
|
116 |
+
|
117 |
+
# # Rename columns
|
118 |
+
# for idx, df in enumerate(initial_datasets):
|
119 |
+
# initial_datasets[idx] = df.rename(columns={
|
120 |
+
# df.columns[0]: 'Problem_Description',
|
121 |
+
# df.columns[1]: 'Geographical_Location',
|
122 |
+
# df.columns[2]: 'Financial_Weight'
|
123 |
+
# })
|
124 |
+
|
125 |
+
# # Merge datasets
|
126 |
+
# merged_dataset = pd.concat(initial_datasets, ignore_index=True)
|
127 |
+
|
128 |
+
# # Preprocess text
|
129 |
+
# nltk.download('stopwords')
|
130 |
+
# nltk.download('punkt')
|
131 |
+
# nltk.download('omw-1.4')
|
132 |
+
|
133 |
+
# def preprocess_text(text):
|
134 |
+
# translator = str.maketrans("", "", string.punctuation)
|
135 |
+
# text = text.translate(translator)
|
136 |
+
# tokens = word_tokenize(text)
|
137 |
+
# stop_words = set(stopwords.words('english'))
|
138 |
+
# tokens = [word for word in tokens if word.lower() not in stop_words]
|
139 |
+
# return ' '.join(tokens)
|
140 |
+
|
141 |
+
# merged_dataset['Problem_Description'] = merged_dataset['Problem_Description'].astype(str).apply(preprocess_text)
|
142 |
+
# merged_dataset['Problem_Description'] = merged_dataset['Problem_Description'].str.replace(r'\d+', '', regex=True)
|
143 |
+
# merged_dataset['Geographical_Location'] = merged_dataset['Geographical_Location'].str.replace(r'\d+', '', regex=True)
|
144 |
+
# merged_dataset['Problem_Description'] = merged_dataset['Problem_Description'].replace(r'http\S+', '', regex=True).replace(r'www\S+', '', regex=True)
|
145 |
+
# merged_dataset['Geographical_Location'] = merged_dataset['Geographical_Location'].replace(r'http\S+', '', regex=True).replace(r'www\S+', '', regex=True)
|
146 |
+
|
147 |
+
# # Lemmatize text
|
148 |
+
# lemmatizer = nltk.WordNetLemmatizer()
|
149 |
+
# merged_dataset['Problem_Description'] = merged_dataset['Problem_Description'].apply(lambda x: ' '.join([lemmatizer.lemmatize(word) for word in x.split()]))
|
150 |
+
|
151 |
+
# # Clustering
|
152 |
+
# corpus = merged_dataset['Problem_Description'].tolist()
|
153 |
+
# tfidf_vectorizer = TfidfVectorizer(max_features=77000)
|
154 |
+
# tfidf_matrix = tfidf_vectorizer.fit_transform(corpus)
|
155 |
+
|
156 |
+
# problem_cluster_count = 77
|
157 |
+
# kmeans = KMeans(n_clusters=problem_cluster_count)
|
158 |
+
# kmeans.fit(tfidf_matrix)
|
159 |
+
|
160 |
+
# terms = tfidf_vectorizer.get_feature_names_out()
|
161 |
+
# ordered_centroids = kmeans.cluster_centers_.argsort()[:, ::-1]
|
162 |
+
|
163 |
+
# cluster_representations = {}
|
164 |
+
# for i in range(kmeans.n_clusters):
|
165 |
+
# cluster_representations[i] = [terms[ind] for ind in ordered_centroids[i, :17]]
|
166 |
+
|
167 |
+
# merged_dataset['Problem_Category_Numeric'] = kmeans.labels_
|
168 |
+
# merged_dataset['Problem_Category_Words'] = [cluster_representations[label] for label in kmeans.labels_]
|
169 |
+
|
170 |
+
# # Clustering geographical locations
|
171 |
+
# geographical_data = merged_dataset['Geographical_Location'].tolist()
|
172 |
+
# tfidf_vectorizer_geography = TfidfVectorizer(max_features=3000)
|
173 |
+
# tfidf_matrix_geography = tfidf_vectorizer_geography.fit_transform(geographical_data)
|
174 |
+
|
175 |
+
# location_cluster_count = 33
|
176 |
+
# kmeans_locations = KMeans(n_clusters=location_cluster_count)
|
177 |
+
# kmeans_locations.fit(tfidf_matrix_geography)
|
178 |
+
|
179 |
+
# terms_geography = tfidf_vectorizer_geography.get_feature_names_out()
|
180 |
+
# ordered_centroids_geography = kmeans_locations.cluster_centers_.argsort()[:, ::-1]
|
181 |
+
|
182 |
+
# cluster_representations_geography = {}
|
183 |
+
# for i in range(kmeans_locations.n_clusters):
|
184 |
+
# cluster_representations_geography[i] = [terms_geography[ind] for ind in ordered_centroids_geography[i, :5]]
|
185 |
+
|
186 |
+
# merged_dataset['Location_Category_Numeric'] = kmeans_locations.labels_
|
187 |
+
# merged_dataset['Location_Category_Words'] = [cluster_representations_geography[label] for label in kmeans_locations.labels_]
|
188 |
+
|
189 |
+
# # Create 2D matrices for problem descriptions and financial weights
|
190 |
+
# matrix2Dfinances = [[[] for _ in range(location_cluster_count)] for _ in range(problem_cluster_count)]
|
191 |
+
# matrix2Dproblems = [[[] for _ in range(location_cluster_count)] for _ in range(problem_cluster_count)]
|
192 |
+
|
193 |
+
# for index, row in merged_dataset.iterrows():
|
194 |
+
# location_index = row['Location_Category_Numeric']
|
195 |
+
# problem_index = row['Problem_Category_Numeric']
|
196 |
+
# problem_description = row['Problem_Description']
|
197 |
+
# financial_wt = row['Financial_Weight']
|
198 |
+
|
199 |
+
# matrix2Dproblems[problem_index][location_index].append(problem_description)
|
200 |
+
# matrix2Dfinances[problem_index][location_index].append(financial_wt)
|
201 |
+
|
202 |
+
# # Aggregating financial weights
|
203 |
+
# aggregated_Financial_wts = {}
|
204 |
+
# un_aggregated_Financial_wts = {}
|
205 |
+
|
206 |
+
# for Financ_wt_index, Financ_wt_row in enumerate(matrix2Dfinances):
|
207 |
+
# aggregated_Financial_wts[Financ_wt_index] = {}
|
208 |
+
# un_aggregated_Financial_wts[Financ_wt_index] = {}
|
209 |
+
|
210 |
+
# for location_index, cell_finances in enumerate(Financ_wt_row):
|
211 |
+
# cell_sum = sum(cell_finances)
|
212 |
+
# aggregated_Financial_wts[Financ_wt_index][location_index] = cell_sum
|
213 |
+
# un_aggregated_Financial_wts[Financ_wt_index][location_index] = cell_finances
|
214 |
+
|
215 |
+
# matrix2Dfinances_df = pd.DataFrame(aggregated_Financial_wts)
|
216 |
+
# matrix2Dfinances_df.to_excel('matrix2Dfinances_HeatMap.xlsx', index=True)
|
217 |
+
|
218 |
+
# unagregated_finances_df = pd.DataFrame(un_aggregated_Financial_wts)
|
219 |
+
# unagregated_finances_df.to_excel('UNaggregated Financial Weights.xlsx', index=True)
|
220 |
+
|
221 |
+
# # Create heatmaps
|
222 |
+
# plt.figure(figsize=(15, 7))
|
223 |
+
# sns.heatmap(matrix2Dfinances_df, annot=False, cmap='RdYlGn')
|
224 |
+
# plt.title('Project Financial Weights')
|
225 |
+
# plt.ylabel('Location Clusters')
|
226 |
+
# plt.xlabel('Problem Clusters')
|
227 |
+
# plt.savefig('Project Financial Weights_HeatMap_GreenHigh.png')
|
228 |
+
# plt.show()
|
229 |
+
|
230 |
+
# plt.figure(figsize=(14, 6))
|
231 |
+
# sns.heatmap(matrix2Dfinances_df, annot=False, cmap='RdYlGn_r')
|
232 |
+
# plt.title('Project Financial Weights')
|
233 |
+
# plt.ylabel('Location Clusters')
|
234 |
+
# plt.xlabel('Problem Clusters')
|
235 |
+
# plt.savefig('Project Financial Weights_HeatMap_RedHigh.png')
|
236 |
+
# plt.show()
|
237 |
+
|
238 |
+
# # Summarizing problems using T5
|
239 |
+
# model = T5ForConditionalGeneration.from_pretrained('t5-small')
|
240 |
+
# tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
241 |
+
|
242 |
+
# def t5_summarize(text):
|
243 |
+
# input_text = "summarize: " + text
|
244 |
+
# inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
|
245 |
+
# summary_ids = model.generate(inputs, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)
|
246 |
+
# return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
247 |
+
|
248 |
+
# summarized_problems = [[t5_summarize(" ".join(cell)) for cell in row] for row in matrix2Dproblems]
|
249 |
+
|
250 |
+
# # Save summarized problems
|
251 |
+
# with open('summarized_problems.txt', 'w') as file:
|
252 |
+
# for problem_row in summarized_problems:
|
253 |
+
# file.write("\t".join(problem_row) + "\n")
|