SantanuBanerjee commited on
Commit
d2b24d8
·
verified ·
1 Parent(s): b0d7da3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -15
app.py CHANGED
@@ -18,32 +18,32 @@ def data_pre_processing(file_responses):
18
  for col in columns:
19
  file_responses[col] = pd.to_numeric(file_responses[col], errors='coerce').fillna(0)
20
 
21
- # Calculate the Total Allocation
22
- file_responses['Total Allocation'] = file_responses[columns].sum(axis=1)
23
 
24
- # Convert the Tax Payment column to numeric
25
- tax_payment_col = '''How much was your latest Tax payment (in U$D) ?
26
 
27
- Please try to be as accurate as possible:
28
- Eg.: If your last tax amount was INR 25,785/-; then convert it in U$D and enter only the amount as: 310.
29
 
30
- If you have never paid tax, consider putting in a realistic donation amount which wish to contribute towards helping yourself obtain the desired relief.'''
31
 
32
- file_responses[tax_payment_col] = pd.to_numeric(file_responses[tax_payment_col], errors='coerce').fillna(0)
33
 
34
- # Calculate Financial Token Weights
35
- for i, col in enumerate(columns, start=1):
36
- file_responses[f'Financial Token Weight for Problem {i}'] = (
37
- file_responses[tax_payment_col] * file_responses[col] / file_responses['Total Allocation']
38
- ).fillna(0)
39
 
40
  return file_responses
41
  except Exception as e:
42
  return str(e)
43
 
44
  def nlp_pipeline(original_df):
45
- #processed_df = data_pre_processing(original_df)
46
- return original_df
47
 
48
  def process_excel(file):
49
  try:
 
18
  for col in columns:
19
  file_responses[col] = pd.to_numeric(file_responses[col], errors='coerce').fillna(0)
20
 
21
+ # # Calculate the Total Allocation
22
+ # file_responses['Total Allocation'] = file_responses[columns].sum(axis=1)
23
 
24
+ # # Convert the Tax Payment column to numeric
25
+ # tax_payment_col = '''How much was your latest Tax payment (in U$D) ?
26
 
27
+ # Please try to be as accurate as possible:
28
+ # Eg.: If your last tax amount was INR 25,785/-; then convert it in U$D and enter only the amount as: 310.
29
 
30
+ # If you have never paid tax, consider putting in a realistic donation amount which wish to contribute towards helping yourself obtain the desired relief.'''
31
 
32
+ # file_responses[tax_payment_col] = pd.to_numeric(file_responses[tax_payment_col], errors='coerce').fillna(0)
33
 
34
+ # # Calculate Financial Token Weights
35
+ # for i, col in enumerate(columns, start=1):
36
+ # file_responses[f'Financial Token Weight for Problem {i}'] = (
37
+ # file_responses[tax_payment_col] * file_responses[col] / file_responses['Total Allocation']
38
+ # ).fillna(0)
39
 
40
  return file_responses
41
  except Exception as e:
42
  return str(e)
43
 
44
  def nlp_pipeline(original_df):
45
+ processed_df = data_pre_processing(original_df)
46
+ return processed_df
47
 
48
  def process_excel(file):
49
  try: