Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -352,43 +352,56 @@ def create_cluster_dataframes(processed_df):
|
|
352 |
|
353 |
return budget_cluster_df, problem_cluster_df
|
354 |
|
|
|
|
|
|
|
|
|
|
|
355 |
from transformers import GPTNeoForCausalLM, GPT2Tokenizer
|
356 |
-
def generate_project_proposal(prompt):
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
362 |
-
tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
363 |
|
|
|
|
|
|
|
364 |
|
365 |
try:
|
366 |
# input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
367 |
# Truncate the prompt to fit within the model's input limits
|
368 |
-
|
369 |
-
input_ids = tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=
|
370 |
|
371 |
|
372 |
print("Input IDs shape:", input_ids.shape)
|
|
|
373 |
output = model.generate(
|
374 |
input_ids,
|
375 |
-
|
376 |
-
max_new_tokens=500,
|
377 |
num_return_sequences=1,
|
378 |
no_repeat_ngram_size=2,
|
379 |
temperature=0.5,
|
380 |
pad_token_id=tokenizer.eos_token_id # Ensure padding with EOS token
|
381 |
)
|
382 |
print("Output shape:", output.shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
383 |
|
384 |
-
|
385 |
-
|
386 |
-
proposal = proposal.split("Project Proposal:", 1)[1].strip()
|
387 |
-
else:
|
388 |
-
proposal = proposal.strip()
|
389 |
|
390 |
# print("Successfully accessed gpt-neo-1.3B and returning")
|
391 |
-
print("Generated Proposal: ", proposal)
|
392 |
return proposal
|
393 |
except Exception as e:
|
394 |
print("Error generating proposal:", str(e))
|
@@ -404,8 +417,6 @@ import copy
|
|
404 |
def create_project_proposals(budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters):
|
405 |
consoleMessage_and_Print("\n Starting function: create_project_proposals")
|
406 |
proposals = {}
|
407 |
-
|
408 |
-
sanban_debug = False
|
409 |
|
410 |
for loc in budget_cluster_df.index:
|
411 |
consoleMessage_and_Print(f"\n loc: {loc}")
|
@@ -432,26 +443,20 @@ def create_project_proposals(budget_cluster_df, problem_cluster_df, location_clu
|
|
432 |
# Prepare the prompt
|
433 |
# problems_summary = "; \n".join(problem_descriptions) # Join all problem descriptions
|
434 |
# problems_summary = "; \n".join(problem_descriptions[:3]) # Limit to first 3 for brevity
|
435 |
-
problems_summary = "; \n".join(shuffled_descriptions[:
|
436 |
|
437 |
|
438 |
# prompt = f"Generate a solution oriented project proposal for the following:\n\nLocation: {location}\nProblem Domain: {problem_domain}\nProblems: {problems_summary}\n\nProject Proposal:"
|
439 |
# prompt = f"Generate a solution-oriented project proposal for the following public problem (only output the proposal):\n\n Geographical/Digital Location: {location}\nProblem Category: {problem_domain}\nProblems: {problems_summary}\n\nProject Proposal:"
|
440 |
-
prompt = f"Generate a
|
441 |
|
442 |
proposal = generate_project_proposal(prompt)
|
443 |
# Check if proposal is valid
|
444 |
if isinstance(proposal, str) and proposal.strip(): # Valid string that's not empty
|
445 |
proposals[(loc, prob)] = proposal
|
446 |
|
447 |
-
sanban_debug = True
|
448 |
-
break
|
449 |
-
|
450 |
else:
|
451 |
print(f"Skipping empty problem descriptions for location: {location}, problem domain: {problem_domain}")
|
452 |
-
|
453 |
-
if sanban_debug:
|
454 |
-
break
|
455 |
|
456 |
return proposals
|
457 |
|
@@ -746,8 +751,8 @@ def process_excel(file):
|
|
746 |
|
747 |
|
748 |
example_files = []
|
749 |
-
example_files.append('#TaxDirection (Responses)_BasicExample.xlsx')
|
750 |
-
|
751 |
# example_files.append('#TaxDirection (Responses)_UltimateExample.xlsx')
|
752 |
|
753 |
|
@@ -765,7 +770,7 @@ interface = gr.Interface(
|
|
765 |
|
766 |
outputs=[
|
767 |
gr.File(label="Download the processed Excel File containing the ** Project Proposals ** for each Location~Problem paired combination"), # File download output
|
768 |
-
gr.Textbox(label="Console Messages", lines=
|
769 |
],
|
770 |
|
771 |
|
|
|
352 |
|
353 |
return budget_cluster_df, problem_cluster_df
|
354 |
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
|
359 |
+
|
360 |
from transformers import GPTNeoForCausalLM, GPT2Tokenizer
|
361 |
+
def generate_project_proposal(prompt): # Generate the proposal
|
362 |
+
# model_Name = "EleutherAI/gpt-neo-2.7B"
|
363 |
+
model_Name = "EleutherAI/gpt-neo-1.3B"
|
364 |
+
|
365 |
+
consoleMessage_and_Print(f"Trying to access {model_Name} model. The Prompt is: \n{prompt}")
|
|
|
|
|
366 |
|
367 |
+
model = GPTNeoForCausalLM.from_pretrained(model_Name)
|
368 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_Name)
|
369 |
+
model_max_token_limit = 2048
|
370 |
|
371 |
try:
|
372 |
# input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
373 |
# Truncate the prompt to fit within the model's input limits
|
374 |
+
# Adjust as per your model's limit
|
375 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length = model_max_token_limit/2)
|
376 |
|
377 |
|
378 |
print("Input IDs shape:", input_ids.shape)
|
379 |
+
# Generate the output
|
380 |
output = model.generate(
|
381 |
input_ids,
|
382 |
+
max_new_tokens = model_max_token_limit,
|
|
|
383 |
num_return_sequences=1,
|
384 |
no_repeat_ngram_size=2,
|
385 |
temperature=0.5,
|
386 |
pad_token_id=tokenizer.eos_token_id # Ensure padding with EOS token
|
387 |
)
|
388 |
print("Output shape:", output.shape)
|
389 |
+
|
390 |
+
|
391 |
+
# Decode the output to text
|
392 |
+
full_returned_segment = tokenizer.decode(output[0], skip_special_tokens=True)
|
393 |
+
|
394 |
+
# Slice off the input part if the input length is known
|
395 |
+
input_length = input_ids.shape[1]
|
396 |
+
generated_part = tokenizer.decode(output[0][input_length:], skip_special_tokens=True)
|
397 |
+
|
398 |
+
proposal = generated_part.strip()
|
399 |
|
400 |
+
# if "Project Proposal:" in proposal:
|
401 |
+
# proposal = proposal.split("Project Proposal:", 1)[1].strip()
|
|
|
|
|
|
|
402 |
|
403 |
# print("Successfully accessed gpt-neo-1.3B and returning")
|
404 |
+
print("Generated Proposal: \n", proposal,"\n\n")
|
405 |
return proposal
|
406 |
except Exception as e:
|
407 |
print("Error generating proposal:", str(e))
|
|
|
417 |
def create_project_proposals(budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters):
|
418 |
consoleMessage_and_Print("\n Starting function: create_project_proposals")
|
419 |
proposals = {}
|
|
|
|
|
420 |
|
421 |
for loc in budget_cluster_df.index:
|
422 |
consoleMessage_and_Print(f"\n loc: {loc}")
|
|
|
443 |
# Prepare the prompt
|
444 |
# problems_summary = "; \n".join(problem_descriptions) # Join all problem descriptions
|
445 |
# problems_summary = "; \n".join(problem_descriptions[:3]) # Limit to first 3 for brevity
|
446 |
+
problems_summary = "; \n".join(shuffled_descriptions[:7])
|
447 |
|
448 |
|
449 |
# prompt = f"Generate a solution oriented project proposal for the following:\n\nLocation: {location}\nProblem Domain: {problem_domain}\nProblems: {problems_summary}\n\nProject Proposal:"
|
450 |
# prompt = f"Generate a solution-oriented project proposal for the following public problem (only output the proposal):\n\n Geographical/Digital Location: {location}\nProblem Category: {problem_domain}\nProblems: {problems_summary}\n\nProject Proposal:"
|
451 |
+
prompt = f"Generate a singular solution-oriented project proposal bespoke to the following Location~Domain cluster of public problems:\n\n Geographical/Digital Location: {location}\nProblem Domain: {problem_domain}\nProblems: {problems_summary}\n\nProject Proposal: \t"
|
452 |
|
453 |
proposal = generate_project_proposal(prompt)
|
454 |
# Check if proposal is valid
|
455 |
if isinstance(proposal, str) and proposal.strip(): # Valid string that's not empty
|
456 |
proposals[(loc, prob)] = proposal
|
457 |
|
|
|
|
|
|
|
458 |
else:
|
459 |
print(f"Skipping empty problem descriptions for location: {location}, problem domain: {problem_domain}")
|
|
|
|
|
|
|
460 |
|
461 |
return proposals
|
462 |
|
|
|
751 |
|
752 |
|
753 |
example_files = []
|
754 |
+
# example_files.append('#TaxDirection (Responses)_BasicExample.xlsx')
|
755 |
+
example_files.append('#TaxDirection (Responses)_IntermediateExample.xlsx')
|
756 |
# example_files.append('#TaxDirection (Responses)_UltimateExample.xlsx')
|
757 |
|
758 |
|
|
|
770 |
|
771 |
outputs=[
|
772 |
gr.File(label="Download the processed Excel File containing the ** Project Proposals ** for each Location~Problem paired combination"), # File download output
|
773 |
+
gr.Textbox(label="Console Messages", lines=5, interactive=False) # Console messages output
|
774 |
],
|
775 |
|
776 |
|