SantanuBanerjee commited on
Commit
ec47bcd
·
verified ·
1 Parent(s): a940375

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -278,6 +278,7 @@ def extract_problem_domains(df,
278
  cluster_labels = kmeans.fit_predict(X)
279
 
280
  # # BERTopic approach (commented out)
 
281
  # topic_model = BERTopic()
282
  # topics, _ = topic_model.fit_transform(df[text_column].tolist())
283
  # topic_model.reduce_topics(df[text_column].tolist(), nr_topics=optimal_n_clusters)
@@ -298,9 +299,8 @@ def extract_problem_domains(df,
298
  # print(f"top_words: {top_words}, type: {type(top_words)}")
299
  # print(f"center.argsort(): {center.argsort()}, type: {type(center.argsort())}")
300
 
301
- console_messages.append(f"top_words: {top_words}, type: {type(top_words)}",
302
- f"center.argsort(): {center.argsort()}, type: {type(center.argsort())}"
303
- )
304
 
305
 
306
  # top_word_indices = center.argsort()[-top_words:][::-1]
 
278
  cluster_labels = kmeans.fit_predict(X)
279
 
280
  # # BERTopic approach (commented out)
281
+ console_messages.append("BERT is currently commented...")
282
  # topic_model = BERTopic()
283
  # topics, _ = topic_model.fit_transform(df[text_column].tolist())
284
  # topic_model.reduce_topics(df[text_column].tolist(), nr_topics=optimal_n_clusters)
 
299
  # print(f"top_words: {top_words}, type: {type(top_words)}")
300
  # print(f"center.argsort(): {center.argsort()}, type: {type(center.argsort())}")
301
 
302
+ console_messages.append(f"top_words: {top_words}, type: {type(top_words)}")
303
+ console_messages.append(f"center.argsort(): {center.argsort()}, type: {type(center.argsort())}")
 
304
 
305
 
306
  # top_word_indices = center.argsort()[-top_words:][::-1]