def transcribe(audio): text = trans(audio)["text"] return text def clasificacion(text): return clasificador(text)[0]["label"] def clasifica_imagen(inp): inp = inp.reshape((-1224,224,3)) inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) prediction = inception_net.predict(inp).flatten() confidences = {etiquetas[i]:float(prediction[i]) for i in range(1000)} return confidences