Spaces:
Sleeping
Sleeping
import streamlit as st | |
import base64 | |
from huggingface_hub import InferenceClient | |
import os | |
# Initialize Hugging Face Inference client using token from environment variables | |
client = InferenceClient(api_key=os.getenv("HF_API_TOKEN")) | |
# 1. Function to identify dish from image | |
def identify_dish(image_bytes): | |
encoded_image = base64.b64encode(image_bytes).decode("utf-8") | |
dish_name = "" | |
for message in client.chat_completion( | |
model="meta-llama/Llama-3.2-11B-Vision-Instruct", | |
messages=[ | |
{ | |
"role": "You are a food identification expert who identifies dishes from images. Your task is to strictly return the names of the dishes present in the image. Only return the dish names if you have high Confidence Level and without additional explanation or description.", | |
"content": [ | |
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encoded_image}" }}, | |
{"type": "text", "text": "Identify the dishes in the image and return only the names of the dishes."}, | |
], | |
} | |
], | |
max_tokens=70, | |
stream=True, | |
): | |
if message.choices[0].delta.content: | |
dish_name += message.choices[0].delta.content | |
return dish_name.strip() | |
# 2. Function to get user inputs and calculate daily caloric needs | |
def calculate_metrics(age, gender, height_cm, weight_kg, weight_goal, activity_level, time_frame_months): | |
bmi = weight_kg / ((height_cm / 100) ** 2) | |
if gender == "male": | |
bmr = 10 * weight_kg + 6.25 * height_cm - 5 * age + 5 | |
else: | |
bmr = 10 * weight_kg + 6.25 * height_cm - 5 * age - 161 | |
activity_multipliers = { | |
"sedentary": 1.2, | |
"light": 1.375, | |
"moderate": 1.55, | |
"active": 1.725, | |
"very active": 1.9 | |
} | |
tdee = bmr * activity_multipliers[activity_level] | |
if gender == "male": | |
ibw = 50 + (0.91 * (height_cm - 152.4)) | |
else: | |
ibw = 45.5 + (0.91 * (height_cm - 152.4)) | |
if weight_goal == "loss": | |
daily_caloric_needs = tdee - 500 | |
elif weight_goal == "gain": | |
daily_caloric_needs = tdee + 500 | |
else: | |
daily_caloric_needs = tdee | |
protein_calories = daily_caloric_needs * 0.2 | |
fat_calories = daily_caloric_needs * 0.25 | |
carbohydrate_calories = daily_caloric_needs * 0.55 | |
return { | |
"BMI": bmi, | |
"BMR": bmr, | |
"TDEE": tdee, | |
"IBW": ibw, | |
"Daily Caloric Needs": daily_caloric_needs, | |
"Protein Calories": protein_calories, | |
"Fat Calories": fat_calories, | |
"Carbohydrate Calories": carbohydrate_calories | |
} | |
# 3. Function to generate diet plan | |
def generate_diet_plan(dish_name, calorie_intake_per_day, goal): | |
user_input = f""" | |
You are a certified Dietitian with 20 years of experience. Based on the following input, create an Indian diet plan that fits within the calculated calorie intake and assesses if the given dish is suitable for the user's goal. | |
Input: | |
- Dish Name: {dish_name} | |
- Caloric Intake per Day: {calorie_intake_per_day} calories | |
- Goal: {goal} | |
""" | |
response = client.chat_completion( | |
model="meta-llama/Meta-Llama-3-8B-Instruct", | |
messages=[{"role": "You are a certified Dietitian with 20 years of Experience", "content": user_input}], | |
max_tokens=500 | |
) | |
return response.choices[0].message.content | |
# Streamlit App Title | |
st.title("AI Diet Planner") | |
# Sidebar for user input | |
st.sidebar.title("User Input") | |
image_file = st.sidebar.file_uploader("Upload an image of the dish", type=["jpeg", "png"]) | |
age = st.sidebar.number_input("Enter your age", min_value=1) | |
gender = st.sidebar.selectbox("Select your gender", ["male", "female"]) | |
height_cm = st.sidebar.number_input("Enter your height (cm)", min_value=1.0) | |
weight_kg = st.sidebar.number_input("Enter your weight (kg)", min_value=1.0) | |
weight_goal = st.sidebar.selectbox("Weight goal", ["loss", "gain", "maintain"]) | |
activity_level = st.sidebar.selectbox("Activity level", ["sedentary", "light", "moderate", "active", "very active"]) | |
time_frame = st.sidebar.number_input("Time frame to achieve goal (months)", min_value=1) | |
# Submit button | |
submit = st.sidebar.button("Submit") | |
# Process the image and calculate metrics upon submission | |
if submit: | |
if image_file: | |
st.write("### Results") | |
image_bytes = image_file.read() | |
# Step 1: Identify the dish | |
dish_name = identify_dish(image_bytes) | |
st.markdown("<hr>", unsafe_allow_html=True) | |
st.write("#### Dish Name Identified:") | |
st.markdown(f"<div style='background-color: #d4edda; color: #155724; padding: 10px; border-radius: 10px;'>{dish_name}</div>", unsafe_allow_html=True) | |
# Step 2: Perform Calculations | |
metrics = calculate_metrics(age, gender, height_cm, weight_kg, weight_goal, activity_level, time_frame) | |
st.markdown("<hr>", unsafe_allow_html=True) | |
st.write("#### Metrics Calculated:") | |
st.markdown(f""" | |
<div style='background-color: #f8d7da; color: #721c24; padding: 10px; border-radius: 10px;'> | |
<p><b>Your BMI:</b> {metrics['BMI']:.2f}</p> | |
<p><b>Your BMR:</b> {metrics['BMR']:.2f} calories</p> | |
<p><b>Your TDEE:</b> {metrics['TDEE']:.2f} calories</p> | |
<p><b>Ideal Body Weight (IBW):</b> {metrics['IBW']:.2f} kg</p> | |
<p><b>Daily Caloric Needs:</b> {metrics['Daily Caloric Needs']:.2f} calories</p> | |
</div> | |
""", unsafe_allow_html=True) | |
# Step 3: Generate diet plan | |
diet_plan = generate_diet_plan(dish_name, metrics["Daily Caloric Needs"], weight_goal) | |
st.markdown("<hr>", unsafe_allow_html=True) | |
st.write("#### Diet Plan Based on Dish & Goal:") | |
st.markdown(f"<div style='background-color: #d1ecf1; color: #0c5460; padding: 10px; border-radius: 10px;'>{diet_plan}</div>", unsafe_allow_html=True) | |
else: | |
st.error("Please upload a valid image in JPEG or PNG format.") | |
# CSS styling | |
st.markdown(""" | |
<style> | |
.stButton button { background-color: #4CAF50; color: white; } | |
.stContainer { border: 1px solid #ddd; padding: 20px; margin-bottom: 20px; } | |
hr { border: 1px solid #e9ecef; margin: 20px 0; } | |
</style> | |
""", unsafe_allow_html=True) | |