Spaces:
Sleeping
Sleeping
import os | |
import requests | |
import streamlit as st | |
from PIL import Image | |
from io import BytesIO | |
from transformers import MBartForConditionalGeneration, MBart50Tokenizer | |
import time | |
# Fetch the API keys from Hugging Face Secrets | |
HUGGINGFACE_TOKEN = os.getenv("Hugging_face_token") | |
GROQ_API_KEY = os.getenv("Groq_api") | |
# Hugging Face API endpoint | |
HF_API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" | |
hf_headers = {"Authorization": f"Bearer {HUGGINGFACE_TOKEN}"} | |
# Groq API endpoint | |
groq_url = "https://api.groq.com/openai/v1/chat/completions" | |
groq_headers = { | |
"Authorization": f"Bearer {GROQ_API_KEY}", | |
"Content-Type": "application/json" | |
} | |
# Function to query Hugging Face model for image generation | |
def query_huggingface(payload): | |
response = requests.post(HF_API_URL, headers=hf_headers, json=payload) | |
if response.status_code != 200: | |
st.error(f"Error: {response.status_code} - {response.text}") | |
return None | |
return response.content | |
# Function to generate text using Groq API | |
def generate_response(prompt): | |
payload = { | |
"model": "mixtral-8x7b-32768", | |
"messages": [ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": prompt} | |
], | |
"max_tokens": 100, | |
"temperature": 0.7 | |
} | |
response = requests.post(groq_url, json=payload, headers=groq_headers) | |
if response.status_code == 200: | |
result = response.json() | |
return result['choices'][0]['message']['content'] | |
else: | |
st.error(f"Error: {response.status_code} - {response.text}") | |
return None | |
# Function to translate Tamil to English using MBart model | |
def translate_tamil_to_english(tamil_text): | |
model_name = "facebook/mbart-large-50-many-to-one-mmt" | |
model = MBartForConditionalGeneration.from_pretrained(model_name) | |
tokenizer = MBart50Tokenizer.from_pretrained(model_name, src_lang="ta_IN") | |
inputs = tokenizer(tamil_text, return_tensors="pt") | |
translated = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]) | |
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) | |
return translated_text | |
# Main function to generate text and image | |
def generate_image_and_text(user_input): | |
with st.spinner("Generating results..."): | |
time.sleep(2) # Simulate some processing time | |
# Translate Tamil to English | |
english_input = translate_tamil_to_english(user_input) | |
if not english_input: | |
st.error("Error in translation.") | |
return | |
# Generate text description (100 tokens) and image prompt (30 tokens) using Groq API | |
full_text_description = generate_response(english_input) | |
if not full_text_description: | |
st.error("Error in text generation.") | |
return | |
# Create image prompt based on the full text description | |
image_prompt = generate_response(f"Create a concise image prompt from the following text: {full_text_description}") | |
if not image_prompt: | |
st.error("Error in generating image prompt.") | |
return | |
# Request an image based on the generated image prompt | |
image_data = query_huggingface({"inputs": image_prompt}) | |
if not image_data: | |
st.error("Error in image generation.") | |
return | |
# Display the results | |
st.markdown("### Translated English Text:") | |
st.write(english_input) | |
st.markdown("### Generated Text Response:") | |
st.write(full_text_description) | |
try: | |
# Load and display the image | |
image = Image.open(BytesIO(image_data)) | |
st.image(image, caption="Generated Image", use_column_width=True) | |
except Exception as e: | |
st.error(f"Failed to display image: {e}") | |
# Streamlit interface | |
st.title("Multi-Modal Generator (Tamil to English)") | |
st.write("Enter a prompt in Tamil to generate both text and an image.") | |
# Input field for Tamil text | |
user_input = st.text_input("Enter Tamil text here:") | |
# Generate results when button is clicked | |
if st.button("Generate"): | |
if user_input: | |
generate_image_and_text(user_input) | |
else: | |
st.error("Please enter a Tamil text.") | |