Spaces:
Sleeping
Sleeping
File size: 6,576 Bytes
07930ee 1f8970b 07930ee 1f8970b f37d2cd 1f8970b f37d2cd 3302d5d f37d2cd 1f8970b f37d2cd 1f8970b f37d2cd 1f8970b f37d2cd ff07a9b 5e70bfa 3302d5d f37d2cd 3302d5d f37d2cd 3302d5d f37d2cd 07930ee ff07a9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import streamlit as st
import requests
import os
# Fetch Hugging Face and Groq API keys from secrets
Transalate_token = os.getenv('HUGGINGFACE_TOKEN')
Image_Token = os.getenv('HUGGINGFACE_TOKEN')
Content_Token = os.getenv('GROQ_API_KEY')
Image_prompt_token = os.getenv('GROQ_API_KEY')
# API Headers
Translate = {"Authorization": f"Bearer {Transalate_token}"}
Image_generation = {"Authorization": f"Bearer {Image_Token}"}
Content_generation = {
"Authorization": f"Bearer {Content_Token}",
"Content-Type": "application/json"
}
Image_Prompt = {
"Authorization": f"Bearer {Image_prompt_token}",
"Content-Type": "application/json"
}
# Translation Model API URL (Tamil to English)
translation_url = "https://api-inference.huggingface.co/models/facebook/mbart-large-50-many-to-one-mmt"
# Text-to-Image Model API URL
image_generation_url = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
# Function to query Hugging Face translation model
def translate_text(text):
payload = {"inputs": text}
response = requests.post(translation_url, headers=Translate, json=payload)
if response.status_code == 200:
result = response.json()
translated_text = result[0]['generated_text']
return translated_text
else:
st.error(f"Translation Error {response.status_code}: {response.text}")
st.write(f'Please try after sometime 😥😥😥')
return None
# Function to query Groq content generation model
def generate_content(english_text, max_tokens, temperature):
url = "https://api.groq.com/openai/v1/chat/completions"
payload = {
"model": "llama-3.1-70b-versatile",
"messages": [
{"role": "system", "content": "You are a creative and insightful writer."},
{"role": "user", "content": f"Write educational content about {english_text} within {max_tokens} tokens."}
],
"max_tokens": max_tokens,
"temperature": temperature
}
response = requests.post(url, json=payload, headers=Content_generation)
if response.status_code == 200:
result = response.json()
return result['choices'][0]['message']['content']
else:
st.error(f"Content Generation Error: {response.status_code}")
return None
# Function to generate image prompt
def generate_image_prompt(english_text):
payload = {
"model": "mixtral-8x7b-32768",
"messages": [
{"role": "system", "content": "You are a professional Text to image prompt generator."},
{"role": "user", "content": f"Create a text to image generation prompt about {english_text} within 30 tokens."}
],
"max_tokens": 30
}
response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=payload, headers=Image_Prompt)
if response.status_code == 200:
result = response.json()
return result['choices'][0]['message']['content']
else:
st.error(f"Prompt Generation Error: {response.status_code}")
return None
# Function to generate an image from the prompt
def generate_image(image_prompt):
data = {"inputs": image_prompt}
response = requests.post(image_generation_url, headers=Image_generation, json=data)
if response.status_code == 200:
return response.content
else:
st.error(f"Image Generation Error {response.status_code}: {response.text}")
return None
# Main Streamlit app
def main():
# Custom CSS for background, borders, and other styling
st.markdown(
"""
<style>
body {
background-image: url('https://wallpapercave.com/wp/wp4008910.jpg');
background-size: cover;
}
.reportview-container {
background: rgba(255, 255, 255, 0.85);
padding: 2rem;
border-radius: 10px;
box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.1);
}
.result-container {
border: 2px solid #4CAF50;
padding: 20px;
border-radius: 10px;
margin-top: 20px;
animation: fadeIn 2s ease;
}
@keyframes fadeIn {
0% { opacity: 0; }
100% { opacity: 1; }
}
.stButton button {
background-color: #4CAF50;
color: white;
border-radius: 10px;
padding: 10px;
}
.stButton button:hover {
background-color: #45a049;
transform: scale(1.05);
transition: 0.2s ease-in-out;
}
</style>
""", unsafe_allow_html=True
)
st.title("🅰️ℹ️ FusionMind ➡️ Multimodal Generator 🤖")
# Sidebar for temperature and token adjustment
st.sidebar.header("Settings")
temperature = st.sidebar.slider("Select Temperature", 0.1, 1.0, 0.7)
max_tokens = st.sidebar.slider("Max Tokens for Content Generation", 100, 400, 200)
# Suggested inputs
st.write("## Suggested Inputs")
suggestions = ["தரவு அறிவியல்", "புதிய திறன்களைக் கற்றுக்கொள்வது எப்படி", "ராக்கெட் எப்படி வேலை செய்கிறது"]
selected_suggestion = st.selectbox("Select a suggestion or enter your own:", [""] + suggestions)
# Input box for user
tamil_input = st.text_input("Enter Tamil text (or select a suggestion):", selected_suggestion)
if st.button("Generate"):
# Step 1: Translation (Tamil to English)
if tamil_input:
st.write("### Translated English Text:")
english_text = translate_text(tamil_input)
if english_text:
st.success(english_text)
# Step 2: Generate Educational Content
st.write("### Generated Educational Content:")
with st.spinner('Generating content...'):
content_output = generate_content(english_text, max_tokens, temperature)
if content_output:
st.success(content_output)
# Step 3: Generate Image from the prompt
st.write("### Generated Image:")
with st.spinner('Generating image...'):
image_prompt = generate_image_prompt(english_text)
image_data = generate_image(image_prompt)
if image_data:
st.image(image_data, caption="Generated Image")
if __name__ == "__main__":
main()
|