Spaces:
Sleeping
Sleeping
File size: 5,788 Bytes
ebe40f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import streamlit as st
from langchain.schema import Document
from langchain_core.messages import AIMessage, HumanMessage
from sentence_transformers import SentenceTransformer
from langchain.prompts.chat import ChatPromptTemplate
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.document_loaders import PyPDFLoader
from aift.multimodal import textqa
from aift import setting
import chromadb
chromadb.api.client.SharedSystemClient.clear_system_cache()
# Set API key for Pathumma
setting.set_api_key('T69FqnYgOdreO5G0nZaM8gHcjo1sifyU')
# App Configuration
st.set_page_config(page_title="Nong Nok", page_icon="🤖")
st.markdown(
"""
<style>
@import url('https://fonts.googleapis.com/css2?family=Kanit:wght@700&display=swap');
body {
margin: 0;
padding: 0;
}
.header-container {
position: absolute;
top: 100%;
left: 50%;
transform: translate(-50%, -50%);
text-align: center;
margin-bottom: 25px;
}
.header-title {
font-size: 4em;
margin: 0;
white-space: nowrap;
font-family: 'Kanit', sans-serif;
color: white; /* Fallback color */
-webkit-text-stroke: 2px black; /* Stroke width and color */
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.5); /* Optional shadow for better visibility */
animation: fadeIn 1s forwards;
}
.sub-title {
position: absolute;
bottom: -10px;
right: -20px;
font-size: 1.5em;
transform: rotate(-10deg);
color: #21A2DB;
white-space: nowrap;
}
@keyframes fadeIn {
0% {
color: transparent;
}
100% {
color: white;
}
}
</style>
<div class="header-container">
<h1 class="header-title">
PDPA Chatbot
</h1>
<div class="sub-title">( Noknoy-0.5 )</div>
</div>
""",
unsafe_allow_html=True
)
st.markdown(" ")
st.markdown(" ")
st.markdown(" ")
# Custom Embeddings
class CustomEmbeddings:
def __init__(self, model_name="mrp/simcse-model-m-bert-thai-cased"):
self.model = SentenceTransformer(model_name)
def embed_query(self, text):
return self.model.encode([text])[0].tolist()
def embed_documents(self, texts):
return [self.model.encode(text).tolist() for text in texts]
# Pathumma Model Wrapper
class PathummaModel:
def __init__(self):
pass
def generate(self, instruction: str, return_json: bool = False):
response = textqa.generate(instruction=instruction, return_json=return_json)
if return_json:
return response.get("content", "")
return response
def __call__(self, input: str):
return self.generate(input, return_json=False)
# Initialize Pathumma model
model_local = PathummaModel()
# Load PDF file
file_path = "langchain.pdf"
loader = PyPDFLoader(file_path)
docs = loader.load()
# Split text into manageable chunks
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(chunk_size=7500, chunk_overlap=100)
doc_splits = text_splitter.split_documents(docs)
# Convert documents to Embeddings and store them in Chroma
vectorstore = Chroma.from_documents(
documents=doc_splits,
collection_name="rag-chroma",
embedding=CustomEmbeddings(model_name="mrp/simcse-model-m-bert-thai-cased"),
)
retriever = vectorstore.as_retriever()
# Generate a response using retriever
def get_response(user_query):
retrieved_docs = retriever.get_relevant_documents(user_query)
retrieved_context = " ".join([doc.page_content for doc in retrieved_docs])
after_rag_template = """ตอบคำถามโดยพิจารณาจากบริบทต่อไปนี้เท่านั้น:
{context}
คำถาม: {question}
"""
prompt = after_rag_template.format(context=retrieved_context, question=user_query)
response = model_local(prompt)
return response
# Initialize session state
if "chat_history" not in st.session_state:
st.session_state.chat_history = [
AIMessage(content='🐦 ยินดีต้อนรับสู่น้องนก แชทบอทที่พร้อมจะให้ข้อมูลคุณเกี่ยวกับพระราชบัญญัติคุ้มครองข้อมูลส่วนบุคคล (PDPA) มีอะไรให้ช่วยไหมครับ?'),
]
# Render chat history
for message in st.session_state.chat_history:
if isinstance(message, AIMessage):
with st.chat_message("AI"):
st.write(message.content)
elif isinstance(message, HumanMessage):
with st.chat_message("Human"):
st.write(message.content)
# User input
user_query = st.chat_input("พิมพ์ข้อความที่นี่...")
if user_query is not None and user_query.strip() != "":
st.session_state.chat_history.append(HumanMessage(content=user_query))
with st.chat_message("Human"):
st.markdown(user_query)
with st.chat_message("AI"):
placeholder = st.empty()
placeholder.markdown("กำลังสร้างคำตอบ...")
response = get_response(user_query)
placeholder.markdown(response)
st.session_state.chat_history.append(AIMessage(content=response))
|