Sapphire-356 commited on
Commit
95f8bbc
·
1 Parent(s): 561c4ea

add: Video2MC

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +200 -0
  2. HPE2keyframes.py +323 -0
  3. LICENSE +674 -0
  4. common/arguments.py +102 -0
  5. common/camera.py +107 -0
  6. common/generators.py +425 -0
  7. common/h36m_dataset.py +258 -0
  8. common/humaneva_dataset.py +122 -0
  9. common/inference_3d.py +107 -0
  10. common/jpt_arguments.py +92 -0
  11. common/loss.py +94 -0
  12. common/mocap_dataset.py +40 -0
  13. common/model.py +200 -0
  14. common/quaternion.py +36 -0
  15. common/skeleton.py +88 -0
  16. common/utils.py +202 -0
  17. common/visualization.py +251 -0
  18. data/data_utils.py +110 -0
  19. data/prepare_2d_kpt.py +45 -0
  20. data/prepare_data_2d_h36m_generic.py +108 -0
  21. data/prepare_data_2d_h36m_sh.py +112 -0
  22. data/prepare_data_h36m.py +142 -0
  23. data/prepare_data_humaneva.py +242 -0
  24. joints_detectors/Alphapose/.gitignore +29 -0
  25. joints_detectors/Alphapose/LICENSE +515 -0
  26. joints_detectors/Alphapose/README.md +112 -0
  27. joints_detectors/Alphapose/SPPE/.gitattributes +2 -0
  28. joints_detectors/Alphapose/SPPE/.gitignore +114 -0
  29. joints_detectors/Alphapose/SPPE/LICENSE +21 -0
  30. joints_detectors/Alphapose/SPPE/README.md +1 -0
  31. joints_detectors/Alphapose/SPPE/__init__.py +0 -0
  32. joints_detectors/Alphapose/SPPE/src/__init__.py +0 -0
  33. joints_detectors/Alphapose/SPPE/src/main_fast_inference.py +67 -0
  34. joints_detectors/Alphapose/SPPE/src/models/FastPose.py +35 -0
  35. joints_detectors/Alphapose/SPPE/src/models/__init__.py +1 -0
  36. joints_detectors/Alphapose/SPPE/src/models/hg-prm.py +126 -0
  37. joints_detectors/Alphapose/SPPE/src/models/hgPRM.py +236 -0
  38. joints_detectors/Alphapose/SPPE/src/models/layers/DUC.py +23 -0
  39. joints_detectors/Alphapose/SPPE/src/models/layers/PRM.py +135 -0
  40. joints_detectors/Alphapose/SPPE/src/models/layers/Residual.py +54 -0
  41. joints_detectors/Alphapose/SPPE/src/models/layers/Resnet.py +82 -0
  42. joints_detectors/Alphapose/SPPE/src/models/layers/SE_Resnet.py +99 -0
  43. joints_detectors/Alphapose/SPPE/src/models/layers/SE_module.py +19 -0
  44. joints_detectors/Alphapose/SPPE/src/models/layers/__init__.py +1 -0
  45. joints_detectors/Alphapose/SPPE/src/models/layers/util_models.py +37 -0
  46. joints_detectors/Alphapose/SPPE/src/opt.py +102 -0
  47. joints_detectors/Alphapose/SPPE/src/utils/__init__.py +1 -0
  48. joints_detectors/Alphapose/SPPE/src/utils/dataset/.coco.py.swp +0 -0
  49. joints_detectors/Alphapose/SPPE/src/utils/dataset/__init__.py +0 -0
  50. joints_detectors/Alphapose/SPPE/src/utils/dataset/coco.py +85 -0
.gitignore ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
2
+ # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
3
+
4
+ # User-specific stuff
5
+ .idea/**/workspace.xml
6
+ .idea/**/tasks.xml
7
+ .idea/**/usage.statistics.xml
8
+ .idea/**/dictionaries
9
+ .idea/**/shelf
10
+
11
+ # Generated files
12
+ .idea/**/contentModel.xml
13
+
14
+ # Sensitive or high-churn files
15
+ .idea/**/dataSources/
16
+ .idea/**/dataSources.ids
17
+ .idea/**/dataSources.local.xml
18
+ .idea/**/sqlDataSources.xml
19
+ .idea/**/dynamic.xml
20
+ .idea/**/uiDesigner.xml
21
+ .idea/**/dbnavigator.xml
22
+
23
+ # Gradle
24
+ .idea/**/gradle.xml
25
+ .idea/**/libraries
26
+
27
+ # Secret
28
+ .idea/**/deployment.xml
29
+ .idea/**/remote-mappings.xml
30
+
31
+ # Gradle and Maven with auto-import
32
+ # When using Gradle or Maven with auto-import, you should exclude module files,
33
+ # since they will be recreated, and may cause churn. Uncomment if using
34
+ # auto-import.
35
+ # .idea/modules.xml
36
+ # .idea/*.iml
37
+ # .idea/modules
38
+ # *.iml
39
+ # *.ipr
40
+
41
+ # CMake
42
+ cmake-build-*/
43
+
44
+ # Mongo Explorer plugin
45
+ .idea/**/mongoSettings.xml
46
+
47
+ # File-based project format
48
+ *.iws
49
+
50
+ # IntelliJ
51
+ out/
52
+
53
+ # mpeltonen/sbt-idea plugin
54
+ .idea_modules/
55
+
56
+ # JIRA plugin
57
+ atlassian-ide-plugin.xml
58
+
59
+ # Cursive Clojure plugin
60
+ .idea/replstate.xml
61
+
62
+ # Crashlytics plugin (for Android Studio and IntelliJ)
63
+ com_crashlytics_export_strings.xml
64
+ crashlytics.properties
65
+ crashlytics-build.properties
66
+ fabric.properties
67
+
68
+ # Editor-based Rest Client
69
+ .idea/httpRequests
70
+
71
+ # Android studio 3.1+ serialized cache file
72
+ .idea/caches/build_file_checksums.ser
73
+
74
+ checkpoint/*
75
+ outputs/*
76
+ data/data_3d_h36m.npz
77
+ data/own2DFiles/*
78
+
79
+
80
+
81
+ __pycache__/
82
+ *.py[cod]
83
+
84
+
85
+ *.pyc
86
+ .ipynb_checkpoints/
87
+ *.gif
88
+ *.jpg
89
+ *.png
90
+ *.npz
91
+ *.zip
92
+ *.json
93
+ *.mp4
94
+ *.tar
95
+ *.pth
96
+ *.weights
97
+ *.avi
98
+ *.caffemodel
99
+ *.npy
100
+
101
+
102
+ /st_gcn
103
+ /outputs
104
+ /nohub*
105
+ /VideoSave
106
+ /ActionRecognition
107
+ /work_dir
108
+
109
+
110
+
111
+
112
+
113
+
114
+ __pycache__/
115
+ *.py[cod]
116
+ *$py.class
117
+ *.so
118
+
119
+ eggs/
120
+ .eggs/
121
+ *.egg-info/
122
+ .installed.cfg
123
+ *.egg
124
+
125
+ # PyInstaller
126
+ # Usually these files are written by a python script from a template
127
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
128
+ *.manifest
129
+ *.spec
130
+
131
+ # Unit test / coverage reports
132
+ htmlcov/
133
+ .tox/
134
+ .coverage
135
+ .coverage.*
136
+ .cache
137
+ nosetests.xml
138
+ coverage.xml
139
+ *.cover
140
+ .hypothesis/
141
+
142
+ # Translations
143
+ *.mo
144
+ *.pot
145
+
146
+ # Django stuff:
147
+ *.log
148
+
149
+ # Flask stuff:
150
+ instance/
151
+ .webassets-cache
152
+
153
+ # Scrapy stuff:
154
+ .scrapy
155
+
156
+ # Sphinx documentation
157
+
158
+ # PyBuilder
159
+ target/
160
+
161
+ # Jupyter Notebook
162
+ .ipynb_checkpoints
163
+
164
+ # pyenv
165
+ .python-version
166
+
167
+ # celery beat schedule file
168
+ celerybeat-schedule
169
+
170
+ # SageMath parsed files
171
+ *.sage.py
172
+
173
+ # dotenv
174
+ .env
175
+
176
+ # virtualenv
177
+ .venv
178
+ venv/
179
+ ENV/
180
+
181
+ # Spyder project settings
182
+ .spyderproject
183
+ .spyproject
184
+
185
+ # Rope project settings
186
+ .ropeproject
187
+
188
+ # mkdocs documentation
189
+ /site
190
+
191
+ # mypy
192
+ .mypy_cache/
193
+
194
+ # Self-defined files
195
+ /local_test/
196
+ /lab_processing/
197
+
198
+
199
+ inputs/
200
+ *.miframes
HPE2keyframes.py ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import matplotlib.pyplot as plt
3
+ import pickle
4
+ import torch
5
+ import torch.nn.functional as F
6
+ from scipy.spatial.transform import Rotation
7
+ from scipy.ndimage import binary_erosion, binary_dilation
8
+
9
+ import os
10
+ import json
11
+
12
+
13
+
14
+ def euler_angles_smooth(XYZ_euler_angles):
15
+
16
+ if XYZ_euler_angles.ndim == 1:
17
+ XYZ_euler_angles = XYZ_euler_angles[:, np.newaxis]
18
+
19
+ for i in range(XYZ_euler_angles.shape[0]-1):
20
+ for j in range(XYZ_euler_angles.shape[1]):
21
+ # smooth
22
+ if XYZ_euler_angles[i+1, j] - XYZ_euler_angles[i, j] > 180:
23
+ XYZ_euler_angles[i+1:, j] = XYZ_euler_angles[i+1:, j] - 360
24
+ elif XYZ_euler_angles[i+1, j] - XYZ_euler_angles[i, j] < -180:
25
+ XYZ_euler_angles[i+1:, j] = XYZ_euler_angles[i+1:, j] + 360
26
+
27
+ return np.squeeze(XYZ_euler_angles)
28
+
29
+
30
+
31
+ def xyz2euler_body(xyz, xyz_body_frame, X_dir=1.0, Y_dir=1.0):
32
+ '''
33
+ xyz: Coordinates from 3D human pose estimation. Each dimension: (frame, 3, xyz)
34
+ xyz_body_frame: Coordinates of body frame. Used to calculate the Y direction rotation of body.
35
+ X_dir: -1.0 for arm and body.
36
+ Y_dir: -1.0 for body and head.
37
+ '''
38
+
39
+ # swap y and z to align the coordinate in the mine-imator
40
+ xyz[:, :, [1, 2]] = xyz[:, :, [2, 1]]
41
+ xyz[:, :, 0] = -xyz[:, :, 0]
42
+ xyz_body_frame[:, :, [1, 2]] = xyz_body_frame[:, :, [2, 1]]
43
+ xyz_body_frame[:, :, 0] = -xyz_body_frame[:, :, 0]
44
+
45
+ p0, p1, p2 = torch.unbind(xyz, dim=1)
46
+ p1_, p4_, p14_, p11_ = torch.unbind(xyz_body_frame, dim=1)
47
+
48
+ # solve the cosine pose matrix
49
+ Y = (p0 - p1) * Y_dir
50
+ arm = p2 - p1
51
+
52
+ Y = F.normalize(Y, dim=1)
53
+ X = F.normalize(p11_ + p4_ - p1_ - p14_, dim=1)
54
+ # X = F.normalize(torch.cross(X_dir*arm, Y), dim=1) # TODO smooth
55
+ Z = F.normalize(torch.cross(X, Y), dim=1)
56
+
57
+ cos_pose_matrix = torch.stack([X, Y, Z], dim=2)
58
+ r = Rotation.from_matrix(cos_pose_matrix)
59
+ YXZ_euler_angles = r.as_euler("YXZ", degrees=True)
60
+
61
+ # bend
62
+ bend = -(Y * F.normalize(arm, dim=1)).sum(dim=1) * Y_dir
63
+ bend = torch.rad2deg(torch.acos(bend))
64
+
65
+ # swap xyz
66
+ YXZ_euler_angles[:, [0, 1, 2]] = YXZ_euler_angles[:, [1, 0, 2]]
67
+ XYZ_euler_angles = YXZ_euler_angles
68
+
69
+ # arm cos_pose_matrix
70
+ Y_arm = F.normalize(arm, dim=1)
71
+ X_arm = X
72
+ Z_arm = F.normalize(torch.cross(X_arm, Y_arm), dim=1)
73
+ cos_pose_matrix_arm = torch.stack([X_arm, Y_arm, Z_arm], dim=2)
74
+
75
+ # avoid abrupt changes in angle
76
+ XYZ_euler_angles = euler_angles_smooth(XYZ_euler_angles)
77
+ bend = euler_angles_smooth(bend.numpy())
78
+
79
+ return XYZ_euler_angles, bend, cos_pose_matrix_arm
80
+
81
+
82
+ def xyz2euler_relative(xyz, cos_body, X_dir=1.0, Y_dir=1.0, head=False, leg=False, euler_body=None):
83
+ '''
84
+ xyz: Coordinates from 3D human pose estimation. Each dimension: (frame, 3, xyz)
85
+ X_dir: -1.0 for arm and body.
86
+ Y_dir: -1.0 for body and head.
87
+ '''
88
+
89
+ # swap y and z to align the coordinate in the mine-imator
90
+ xyz[:, :, [1, 2]] = xyz[:, :, [2, 1]]
91
+ xyz[:, :, 0] = -xyz[:, :, 0]
92
+ p0, p1, p2 = torch.unbind(xyz, dim=1)
93
+
94
+ # solve the cosine pose matrix
95
+ Y = (p0 - p1) * Y_dir
96
+ arm = p2 - p1
97
+
98
+ Y = F.normalize(Y, dim=1)
99
+ X = F.normalize(torch.cross(X_dir*arm, Y), dim=1) # TODO smooth
100
+ Z = F.normalize(torch.cross(X, Y), dim=1)
101
+
102
+ cos_pose_matrix = torch.stack([X, Y, Z], dim=2)
103
+
104
+ if head == True:
105
+ Y_arm = F.normalize(arm, dim=1)
106
+ X_arm = X
107
+ Z_arm = F.normalize(torch.cross(X_arm, Y_arm), dim=1)
108
+ cos_pose_matrix = torch.stack([X_arm, Y_arm, Z_arm], dim=2)
109
+
110
+ # relative to the body rotation Y
111
+ if leg == True:
112
+ euler_body_Y = euler_body * 0
113
+ euler_body_Y[:, 0:1] = euler_body[:, 1:2]
114
+ r_body_Y = Rotation.from_euler("YXZ", euler_body_Y, degrees=True)
115
+ cos_body_Y = torch.from_numpy(r_body_Y.as_matrix())
116
+
117
+ # relative to the body
118
+ cos_relative = cos_body if leg == False else cos_body_Y.float()
119
+ cos_pose_matrix = cos_relative.permute(0, 2, 1) @ cos_pose_matrix
120
+ r = Rotation.from_matrix(cos_pose_matrix)
121
+ YXZ_euler_angles = r.as_euler("YXZ", degrees=True)
122
+
123
+ # bend
124
+ bend = -(Y * F.normalize(arm, dim=1)).sum(dim=1) * Y_dir
125
+ bend = torch.rad2deg(torch.acos(bend))
126
+ # if head == True:
127
+ # bend = bend * 0.5
128
+
129
+ # swap xyz
130
+ YXZ_euler_angles[:, [0, 1, 2]] = YXZ_euler_angles[:, [1, 0, 2]]
131
+ XYZ_euler_angles = YXZ_euler_angles
132
+
133
+ # avoid abrupt changes in angle
134
+ XYZ_euler_angles = euler_angles_smooth(XYZ_euler_angles)
135
+ bend = euler_angles_smooth(bend.numpy())
136
+
137
+ return XYZ_euler_angles, bend
138
+
139
+
140
+ def calculate_body_offset(euler_body, euler_right_leg, bend_right_leg, euler_left_leg, bend_left_leg, length_leg=[6, 6], prior=False):
141
+ '''
142
+ Calculate the offset of the body to make the movement more realistic.
143
+ First, determine the foot positions of both legs based on the actual
144
+ effect of Euler angle rotation in Mine-imator. Then, determine which
145
+ leg is currently touching the ground and fix the grounded leg. This
146
+ allows the calculation of the body offset.
147
+
148
+ '''
149
+
150
+ def calculate_leg_coordinates(r_body_Y, euler_leg, bend_leg, length_leg, right=True):
151
+ YXZ_euler_leg = euler_leg[:, [1, 0, 2]]
152
+ r1 = Rotation.from_euler("YXZ", YXZ_euler_leg, degrees=True)
153
+ m1 = r1.as_matrix()
154
+ X1 = m1[:, :, 0] # direction
155
+ Y1 = m1[:, :, 1] # vector to be rotated
156
+ r2 = Rotation.from_rotvec(X1*bend_leg[:, np.newaxis], degrees=True)
157
+ Y2 = r2.apply(Y1) # reconstruct the arm vector
158
+ coordinates = -(Y1 * length_leg[0] + Y2 * length_leg[1])
159
+ coordinates[:, 0] = coordinates[:, 0] - 2
160
+ coordinates = r_body_Y.apply(coordinates)
161
+ return coordinates
162
+
163
+ # calculate the endpoint coordinates of two legs
164
+ euler_body_Y = euler_body * 0
165
+ euler_body_Y[:, 0:1] = euler_body[:, 1:2]
166
+ r_body_Y = Rotation.from_euler("YXZ", euler_body_Y, degrees=True)
167
+ right_coordinates = calculate_leg_coordinates(r_body_Y, euler_right_leg, bend_right_leg, length_leg)
168
+ left_coordinates = calculate_leg_coordinates(r_body_Y, euler_left_leg, bend_left_leg, length_leg)
169
+ # stack, 0: right, 1: left
170
+ coordinates = np.stack([right_coordinates, left_coordinates], axis=1)
171
+
172
+ # determine which leg grounded, 0: right, 1: left
173
+ grounded_flag = (right_coordinates[:, 1] > left_coordinates[:, 1])*1
174
+ # prior knowledge: The more bended legs are not grounded
175
+ if prior == True:
176
+ grounded_flag_left = (bend_right_leg - bend_left_leg) > 30
177
+ grounded_flag_right = (bend_left_leg - bend_right_leg) > 30
178
+ grounded_flag += grounded_flag_left*1
179
+ grounded_flag *= (1 - grounded_flag_right)*1
180
+ # smoothing
181
+ grounded_flag = binary_erosion(grounded_flag, structure=np.ones(7))*1
182
+ grounded_flag = binary_dilation(grounded_flag, structure=np.ones(7))*1
183
+
184
+ body_POS = np.zeros_like(right_coordinates)
185
+
186
+ # POS_Y
187
+ ind = np.array(range(right_coordinates.shape[0]))
188
+ body_POS[:, 1] = -coordinates[ind, grounded_flag, 1]
189
+
190
+ # extract the X, Z coordinates of grounded leg in time t_1
191
+ X_t1 = coordinates[ind[:-1], grounded_flag[:-1], 0]
192
+ Z_t1 = coordinates[ind[:-1], grounded_flag[:-1], 2]
193
+ # extract the X, Z coordinates of grounded leg in time t_2
194
+ # note that the split of grounded_flag not changed
195
+ X_t2 = coordinates[ind[1:], grounded_flag[:-1], 0]
196
+ Z_t2 = coordinates[ind[1:], grounded_flag[:-1], 2]
197
+
198
+ # calculate the relative displacement between two frames
199
+ X_relative = X_t2 - X_t1
200
+ Z_relative = Z_t2 - Z_t1
201
+
202
+ # calculate the absolute displacement
203
+ X_abs = np.cumsum(X_relative)
204
+ Z_abs = np.cumsum(Z_relative)
205
+
206
+ body_POS[1:, 0] = -X_abs
207
+ body_POS[1:, 2] = -Z_abs
208
+
209
+ return body_POS
210
+
211
+
212
+ def add_keyframes(data, length, part_name, euler, bend, not_body=True, not_head=True, body_steve=False, body_POS=None):
213
+ for i in range(length):
214
+ if not_head:
215
+ keyframes_dict = {
216
+ "position": i,
217
+ "part_name": part_name,
218
+ "values": {
219
+ "ROT_X": float(euler[i][0]),
220
+ "ROT_Y": float(euler[i][2]), # Y, Z args in mine-imator miframes is exchanged. Maybe a bug.
221
+ "ROT_Z": float(euler[i][1]*not_body),
222
+ "BEND_ANGLE_X": float(bend[i])
223
+ }
224
+ }
225
+ else: # no bend
226
+ keyframes_dict = {
227
+ "position": i,
228
+ "part_name": part_name,
229
+ "values": {
230
+ "ROT_X": float(euler[i][0]),
231
+ "ROT_Y": float(euler[i][2]),
232
+ "ROT_Z": float(euler[i][1]),
233
+ }
234
+ }
235
+ if body_steve == True:
236
+ keyframes_dict = {
237
+ "position": i,
238
+ "values": {
239
+ "POS_X": float(body_POS[i][0]),
240
+ "POS_Y": float(body_POS[i][2]),
241
+ "POS_Z": float(body_POS[i][1]),
242
+ "ROT_Z": float(euler[i][1])
243
+ }
244
+ }
245
+ data["keyframes"].append(keyframes_dict)
246
+
247
+ print(f"add_key_frames: {part_name}")
248
+
249
+
250
+ def hpe2keyframes(HPE_filename, FPS_mine_imator, keyframes_filename, prior=True):
251
+
252
+ # read data
253
+ with open(HPE_filename, 'rb') as file:
254
+ data = np.load(file)
255
+ print(f"open file: {HPE_filename}")
256
+ xyz = data.copy()
257
+ length = xyz.shape[0]
258
+
259
+ # extract data from each body part
260
+ xyz_right_leg = torch.from_numpy(xyz[:, 1:4, :])
261
+ xyz_right_arm = torch.from_numpy(xyz[:, 14:17, :])
262
+ xyz_left_leg = torch.from_numpy(xyz[:, 4:7, :])
263
+ xyz_left_arm = torch.from_numpy(xyz[:, 11:14, :])
264
+ xyz_body = torch.from_numpy(xyz[:, [0, 7, 8], :])
265
+ xyz_body_frame = torch.from_numpy(xyz[:, [1, 4, 14, 11], :])
266
+ xyz_head = torch.from_numpy(xyz[:, [8, 9, 10], :])
267
+
268
+ # calculate the absolute euler angles of body
269
+ euler_body, bend_body, cos_pos_matrix = xyz2euler_body(xyz_body, xyz_body_frame, X_dir=-1, Y_dir=-1)
270
+
271
+ # calculate the relative euler angles of arm and head with respect to the body ROT_Y
272
+ euler_right_leg, bend_right_leg = xyz2euler_relative(xyz_right_leg, cos_pos_matrix, leg=True, euler_body=euler_body)
273
+ euler_left_leg, bend_left_leg = xyz2euler_relative(xyz_left_leg, cos_pos_matrix, leg=True, euler_body=euler_body)
274
+
275
+ # calculate the relative euler angles of arm and head with respect to the upper body
276
+ euler_right_arm, bend_right_arm = xyz2euler_relative(xyz_right_arm, cos_pos_matrix, X_dir=-1)
277
+ euler_left_arm, bend_left_arm = xyz2euler_relative(xyz_left_arm, cos_pos_matrix, X_dir=-1)
278
+ euler_head, bend_head = xyz2euler_relative(xyz_head, cos_pos_matrix, Y_dir=-1, head=True)
279
+
280
+ # create json format data
281
+ data = {
282
+ "format": 34,
283
+ "created_in": "2.0.0", # mine-imator version
284
+ "is_model": True,
285
+ "tempo": FPS_mine_imator, # FPS
286
+ "length": length, # keyframes length
287
+ "keyframes": [
288
+ ],
289
+ "templates": [],
290
+ "timelines": [],
291
+ "resources": []
292
+ }
293
+
294
+ # relative offset makes the model more realistic
295
+ # caculate the relative offset based on Euler angle and bending angle
296
+ body_POS = calculate_body_offset(euler_body, euler_right_leg, bend_right_leg, euler_left_leg, bend_left_leg, prior=prior)
297
+
298
+
299
+ add_keyframes(data, length, "left_leg", euler_left_leg, bend_left_leg)
300
+ add_keyframes(data, length, "right_leg", euler_right_leg, bend_right_leg)
301
+ add_keyframes(data, length, "left_arm", euler_left_arm, bend_left_arm)
302
+ add_keyframes(data, length, "right_arm", euler_right_arm, bend_right_arm)
303
+ add_keyframes(data, length, "body", euler_body, bend_body, not_body=False)
304
+ add_keyframes(data, length, "head", euler_head, bend_head, not_head=False)
305
+ add_keyframes(data, length, "abc", euler_body, bend_body, body_steve=True, body_POS=body_POS) # TODO
306
+
307
+ # save json
308
+ with open(keyframes_filename, "w") as file:
309
+ json.dump(data, file, indent=4)
310
+
311
+ print(f"keyframes file saves successfully, file path: {os.path.abspath(keyframes_filename)}")
312
+
313
+
314
+
315
+ if __name__ == '__main__':
316
+ # config
317
+ HPE_filename = "outputs/test_3d_output_malaoshi_2-00_2-30_postprocess.npy"
318
+ FPS_mine_imator = 30
319
+ keyframes_filename = "steve_malaoshi2.miframes"
320
+ prior = True
321
+ hpe2keyframes(HPE_filename, FPS_mine_imator, keyframes_filename, prior=prior)
322
+
323
+ print("Done!")
LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
common/arguments.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ import argparse
9
+
10
+
11
+ def parse_args():
12
+ parser = argparse.ArgumentParser(description='Training script')
13
+
14
+ # General arguments
15
+ parser.add_argument('-d', '--dataset', default='h36m', type=str, metavar='NAME', help='target dataset') # h36m or humaneva
16
+ parser.add_argument('-k', '--keypoints', default='cpn_ft_h36m_dbb', type=str, metavar='NAME', help='2D detections to use')
17
+ parser.add_argument('-str', '--subjects-train', default='S1,S5,S6,S7,S8', type=str, metavar='LIST',
18
+ help='training subjects separated by comma')
19
+ parser.add_argument('-ste', '--subjects-test', default='S9,S11', type=str, metavar='LIST', help='test subjects separated by comma')
20
+ parser.add_argument('-sun', '--subjects-unlabeled', default='', type=str, metavar='LIST',
21
+ help='unlabeled subjects separated by comma for self-supervision')
22
+ parser.add_argument('-a', '--actions', default='*', type=str, metavar='LIST',
23
+ help='actions to train/test on, separated by comma, or * for all')
24
+ parser.add_argument('-c', '--checkpoint', default='checkpoint', type=str, metavar='PATH',
25
+ help='checkpoint directory')
26
+ parser.add_argument('--checkpoint-frequency', default=10, type=int, metavar='N',
27
+ help='create a checkpoint every N epochs')
28
+ parser.add_argument('-r', '--resume', default='', type=str, metavar='FILENAME',
29
+ help='checkpoint to resume (file name)')
30
+ parser.add_argument('--evaluate', default='pretrained_h36m_detectron_coco.bin', type=str, metavar='FILENAME', help='checkpoint to evaluate (file name)')
31
+ parser.add_argument('--render', action='store_true', help='visualize a particular video')
32
+ parser.add_argument('--by-subject', action='store_true', help='break down error by subject (on evaluation)')
33
+ parser.add_argument('--export-training-curves', action='store_true', help='save training curves as .png images')
34
+
35
+ # Model arguments
36
+ parser.add_argument('-s', '--stride', default=1, type=int, metavar='N', help='chunk size to use during training')
37
+ parser.add_argument('-e', '--epochs', default=60, type=int, metavar='N', help='number of training epochs')
38
+ parser.add_argument('-b', '--batch-size', default=1024, type=int, metavar='N', help='batch size in terms of predicted frames')
39
+ parser.add_argument('-drop', '--dropout', default=0.25, type=float, metavar='P', help='dropout probability')
40
+ parser.add_argument('-lr', '--learning-rate', default=0.001, type=float, metavar='LR', help='initial learning rate')
41
+ parser.add_argument('-lrd', '--lr-decay', default=0.95, type=float, metavar='LR', help='learning rate decay per epoch')
42
+ parser.add_argument('-no-da', '--no-data-augmentation', dest='data_augmentation', action='store_false',
43
+ help='disable train-time flipping')
44
+ parser.add_argument('-no-tta', '--no-test-time-augmentation', dest='test_time_augmentation', action='store_false',
45
+ help='disable test-time flipping')
46
+ parser.add_argument('-arc', '--architecture', default='3,3,3,3,3', type=str, metavar='LAYERS', help='filter widths separated by comma')
47
+ parser.add_argument('--causal', action='store_true', help='use causal convolutions for real-time processing')
48
+ parser.add_argument('-ch', '--channels', default=1024, type=int, metavar='N', help='number of channels in convolution layers')
49
+
50
+ # Experimental
51
+ parser.add_argument('--subset', default=1, type=float, metavar='FRACTION', help='reduce dataset size by fraction')
52
+ parser.add_argument('--downsample', default=1, type=int, metavar='FACTOR', help='downsample frame rate by factor (semi-supervised)')
53
+ parser.add_argument('--warmup', default=1, type=int, metavar='N', help='warm-up epochs for semi-supervision')
54
+ parser.add_argument('--no-eval', action='store_true', help='disable epoch evaluation while training (small speed-up)')
55
+ parser.add_argument('--dense', action='store_true', help='use dense convolutions instead of dilated convolutions')
56
+ parser.add_argument('--disable-optimizations', action='store_true', help='disable optimized model for single-frame predictions')
57
+ parser.add_argument('--linear-projection', action='store_true', help='use only linear coefficients for semi-supervised projection')
58
+ parser.add_argument('--no-bone-length', action='store_false', dest='bone_length_term',
59
+ help='disable bone length term in semi-supervised settings')
60
+ parser.add_argument('--no-proj', action='store_true', help='disable projection for semi-supervised setting')
61
+
62
+ # Visualization
63
+ parser.add_argument('--viz-subject', type=str, metavar='STR', help='subject to render')
64
+ parser.add_argument('--viz-action', type=str, metavar='STR', help='action to render')
65
+ parser.add_argument('--viz-camera', type=int, default=0, metavar='N', help='camera to render')
66
+ parser.add_argument('--viz-video', type=str, metavar='PATH', help='path to input video')
67
+ parser.add_argument('--viz-skip', type=int, default=0, metavar='N', help='skip first N frames of input video')
68
+ parser.add_argument('--viz-output', type=str, metavar='PATH', help='output file name (.gif or .mp4)')
69
+ parser.add_argument('--viz-bitrate', type=int, default=30000, metavar='N', help='bitrate for mp4 videos')
70
+ parser.add_argument('--viz-no-ground-truth', action='store_true', help='do not show ground-truth poses')
71
+ parser.add_argument('--viz-limit', type=int, default=-1, metavar='N', help='only render first N frames')
72
+ parser.add_argument('--viz-downsample', type=int, default=1, metavar='N', help='downsample FPS by a factor N')
73
+ parser.add_argument('--viz-size', type=int, default=5, metavar='N', help='image size')
74
+ # self add
75
+ parser.add_argument('-in2d','--input_npz', type=str, default='', help='input 2d numpy file')
76
+ parser.add_argument('--video', dest='input_video', type=str, default='', help='input video name')
77
+
78
+ parser.add_argument('--layers', default=3, type=int)
79
+ parser.add_argument('--channel', default=256, type=int)
80
+ parser.add_argument('--d_hid', default=512, type=int)
81
+ parser.add_argument('-f', '--frames', type=int, default=243)
82
+ parser.add_argument('--n_joints', type=int, default=17)
83
+ parser.add_argument('--out_joints', type=int, default=17)
84
+ parser.add_argument('--in_channels', type=int, default=2)
85
+ parser.add_argument('--out_channels', type=int, default=3)
86
+ parser.add_argument('--stride_num', type=list, default=[3, 3, 3, 3, 3])
87
+
88
+ parser.set_defaults(bone_length_term=True)
89
+ parser.set_defaults(data_augmentation=True)
90
+ parser.set_defaults(test_time_augmentation=True)
91
+
92
+ args = parser.parse_args()
93
+ # Check invalid configuration
94
+ if args.resume and args.evaluate:
95
+ print('Invalid flags: --resume and --evaluate cannot be set at the same time')
96
+ exit()
97
+
98
+ if args.export_training_curves and args.no_eval:
99
+ print('Invalid flags: --export-training-curves and --no-eval cannot be set at the same time')
100
+ exit()
101
+
102
+ return args
common/camera.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ import numpy as np
9
+ import torch
10
+
11
+ from common.quaternion import qrot, qinverse
12
+ from common.utils import wrap
13
+
14
+
15
+ def normalize_screen_coordinates(X, w, h):
16
+ assert X.shape[-1] == 2
17
+
18
+ # Normalize so that [0, w] is mapped to [-1, 1], while preserving the aspect ratio
19
+ return X / w * 2 - [1, h / w]
20
+
21
+
22
+ def normalize_screen_coordinates_new(X, w, h):
23
+ assert X.shape[-1] == 2
24
+
25
+ return (X - (w / 2, h / 2)) / (w / 2, h / 2)
26
+
27
+
28
+ def image_coordinates_new(X, w, h):
29
+ assert X.shape[-1] == 2
30
+
31
+ # Reverse camera frame normalization
32
+ return (X * (w / 2, h / 2)) + (w / 2, h / 2)
33
+
34
+
35
+ def image_coordinates(X, w, h):
36
+ assert X.shape[-1] == 2
37
+
38
+ # Reverse camera frame normalization
39
+ return (X + [1, h / w]) * w / 2
40
+
41
+
42
+ def world_to_camera(X, R, t):
43
+ Rt = wrap(qinverse, R) # Invert rotation
44
+ return wrap(qrot, np.tile(Rt, (*X.shape[:-1], 1)), X - t) # Rotate and translate
45
+
46
+
47
+ def camera_to_world(X, R, t):
48
+ return wrap(qrot, np.tile(R, (*X.shape[:-1], 1)), X) + t
49
+
50
+
51
+ def project_to_2d(X, camera_params):
52
+ """
53
+ Project 3D points to 2D using the Human3.6M camera projection function.
54
+ This is a differentiable and batched reimplementation of the original MATLAB script.
55
+
56
+ Arguments:
57
+ X -- 3D points in *camera space* to transform (N, *, 3)
58
+ camera_params -- intrinsic parameteres (N, 2+2+3+2=9)
59
+ focal length / principal point / radial_distortion / tangential_distortion
60
+ """
61
+ assert X.shape[-1] == 3
62
+ assert len(camera_params.shape) == 2
63
+ assert camera_params.shape[-1] == 9
64
+ assert X.shape[0] == camera_params.shape[0]
65
+
66
+ while len(camera_params.shape) < len(X.shape):
67
+ camera_params = camera_params.unsqueeze(1)
68
+
69
+ f = camera_params[..., :2] # focal lendgth
70
+ c = camera_params[..., 2:4] # center principal point
71
+ k = camera_params[..., 4:7]
72
+ p = camera_params[..., 7:]
73
+
74
+ XX = torch.clamp(X[..., :2] / X[..., 2:], min=-1, max=1)
75
+ r2 = torch.sum(XX[..., :2] ** 2, dim=len(XX.shape) - 1, keepdim=True)
76
+
77
+ radial = 1 + torch.sum(k * torch.cat((r2, r2 ** 2, r2 ** 3), dim=len(r2.shape) - 1), dim=len(r2.shape) - 1, keepdim=True)
78
+ tan = torch.sum(p * XX, dim=len(XX.shape) - 1, keepdim=True)
79
+
80
+ XXX = XX * (radial + tan) + p * r2
81
+
82
+ return f * XXX + c
83
+
84
+
85
+ def project_to_2d_linear(X, camera_params):
86
+ """
87
+ 使用linear parameters is a little difference for use linear and no-linear parameters
88
+ Project 3D points to 2D using only linear parameters (focal length and principal point).
89
+
90
+ Arguments:
91
+ X -- 3D points in *camera space* to transform (N, *, 3)
92
+ camera_params -- intrinsic parameteres (N, 2+2+3+2=9)
93
+ """
94
+ assert X.shape[-1] == 3
95
+ assert len(camera_params.shape) == 2
96
+ assert camera_params.shape[-1] == 9
97
+ assert X.shape[0] == camera_params.shape[0]
98
+
99
+ while len(camera_params.shape) < len(X.shape):
100
+ camera_params = camera_params.unsqueeze(1)
101
+
102
+ f = camera_params[..., :2]
103
+ c = camera_params[..., 2:4]
104
+
105
+ XX = torch.clamp(X[..., :2] / X[..., 2:], min=-1, max=1)
106
+
107
+ return f * XX + c
common/generators.py ADDED
@@ -0,0 +1,425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ from itertools import zip_longest
9
+
10
+ import numpy as np
11
+
12
+
13
+ class ChunkedGenerator:
14
+ """
15
+ Batched data generator, used for training.
16
+ The sequences are split into equal-length chunks and padded as necessary.
17
+
18
+ Arguments:
19
+ batch_size -- the batch size to use for training
20
+ cameras -- list of cameras, one element for each video (optional, used for semi-supervised training)
21
+ poses_3d -- list of ground-truth 3D poses, one element for each video (optional, used for supervised training)
22
+ poses_2d -- list of input 2D keypoints, one element for each video
23
+ chunk_length -- number of output frames to predict for each training example (usually 1)
24
+ pad -- 2D input padding to compensate for valid convolutions, per side (depends on the receptive field)
25
+ causal_shift -- asymmetric padding offset when causal convolutions are used (usually 0 or "pad")
26
+ shuffle -- randomly shuffle the dataset before each epoch
27
+ random_seed -- initial seed to use for the random generator
28
+ augment -- augment the dataset by flipping poses horizontally
29
+ kps_left and kps_right -- list of left/right 2D keypoints if flipping is enabled
30
+ joints_left and joints_right -- list of left/right 3D joints if flipping is enabled
31
+ """
32
+
33
+ def __init__(self, batch_size, cameras, poses_3d, poses_2d,
34
+ chunk_length, pad=0, causal_shift=0,
35
+ shuffle=True, random_seed=1234,
36
+ augment=False, kps_left=None, kps_right=None, joints_left=None, joints_right=None,
37
+ endless=False):
38
+ assert poses_3d is None or len(poses_3d) == len(poses_2d), (len(poses_3d), len(poses_2d))
39
+ assert cameras is None or len(cameras) == len(poses_2d)
40
+
41
+ # Build lineage info
42
+ pairs = [] # (seq_idx, start_frame, end_frame, flip) tuples
43
+ for i in range(len(poses_2d)):
44
+ assert poses_3d is None or poses_3d[i].shape[0] == poses_3d[i].shape[0]
45
+ n_chunks = (poses_2d[i].shape[0] + chunk_length - 1) // chunk_length
46
+ offset = (n_chunks * chunk_length - poses_2d[i].shape[0]) // 2
47
+ bounds = np.arange(n_chunks + 1) * chunk_length - offset
48
+ augment_vector = np.full(len(bounds - 1), False, dtype=bool)
49
+ pairs += zip(np.repeat(i, len(bounds - 1)), bounds[:-1], bounds[1:], augment_vector)
50
+ if augment:
51
+ pairs += zip(np.repeat(i, len(bounds - 1)), bounds[:-1], bounds[1:], ~augment_vector)
52
+
53
+ # Initialize buffers
54
+ if cameras is not None:
55
+ self.batch_cam = np.empty((batch_size, cameras[0].shape[-1]))
56
+ if poses_3d is not None:
57
+ self.batch_3d = np.empty((batch_size, chunk_length, poses_3d[0].shape[-2], poses_3d[0].shape[-1]))
58
+ self.batch_2d = np.empty((batch_size, chunk_length + 2 * pad, poses_2d[0].shape[-2], poses_2d[0].shape[-1]))
59
+
60
+ self.num_batches = (len(pairs) + batch_size - 1) // batch_size
61
+ self.batch_size = batch_size
62
+ self.random = np.random.RandomState(random_seed)
63
+ self.pairs = pairs
64
+ self.shuffle = shuffle
65
+ self.pad = pad
66
+ self.causal_shift = causal_shift
67
+ self.endless = endless
68
+ self.state = None
69
+
70
+ self.cameras = cameras
71
+ self.poses_3d = poses_3d
72
+ self.poses_2d = poses_2d
73
+
74
+ self.augment = augment
75
+ self.kps_left = kps_left
76
+ self.kps_right = kps_right
77
+ self.joints_left = joints_left
78
+ self.joints_right = joints_right
79
+
80
+ def num_frames(self):
81
+ return self.num_batches * self.batch_size
82
+
83
+ def random_state(self):
84
+ return self.random
85
+
86
+ def set_random_state(self, random):
87
+ self.random = random
88
+
89
+ def augment_enabled(self):
90
+ return self.augment
91
+
92
+ def next_pairs(self):
93
+ if self.state is None:
94
+ if self.shuffle:
95
+ pairs = self.random.permutation(self.pairs)
96
+ else:
97
+ pairs = self.pairs
98
+ return 0, pairs
99
+ else:
100
+ return self.state
101
+
102
+ def next_epoch(self):
103
+ enabled = True
104
+ while enabled:
105
+ start_idx, pairs = self.next_pairs()
106
+ for b_i in range(start_idx, self.num_batches):
107
+ chunks = pairs[b_i * self.batch_size: (b_i + 1) * self.batch_size]
108
+ for i, (seq_i, start_3d, end_3d, flip) in enumerate(chunks):
109
+ start_2d = start_3d - self.pad - self.causal_shift
110
+ end_2d = end_3d + self.pad - self.causal_shift
111
+
112
+ # 2D poses
113
+ seq_2d = self.poses_2d[seq_i]
114
+ low_2d = max(start_2d, 0)
115
+ high_2d = min(end_2d, seq_2d.shape[0])
116
+ pad_left_2d = low_2d - start_2d
117
+ pad_right_2d = end_2d - high_2d
118
+ if pad_left_2d != 0 or pad_right_2d != 0:
119
+ self.batch_2d[i] = np.pad(seq_2d[low_2d:high_2d], ((pad_left_2d, pad_right_2d), (0, 0), (0, 0)), 'edge')
120
+ else:
121
+ self.batch_2d[i] = seq_2d[low_2d:high_2d]
122
+
123
+ if flip:
124
+ # Flip 2D keypoints
125
+ self.batch_2d[i, :, :, 0] *= -1
126
+ self.batch_2d[i, :, self.kps_left + self.kps_right] = self.batch_2d[i, :, self.kps_right + self.kps_left]
127
+
128
+ # 3D poses
129
+ if self.poses_3d is not None:
130
+ seq_3d = self.poses_3d[seq_i]
131
+ low_3d = max(start_3d, 0)
132
+ high_3d = min(end_3d, seq_3d.shape[0])
133
+ pad_left_3d = low_3d - start_3d
134
+ pad_right_3d = end_3d - high_3d
135
+ if pad_left_3d != 0 or pad_right_3d != 0:
136
+ self.batch_3d[i] = np.pad(seq_3d[low_3d:high_3d], ((pad_left_3d, pad_right_3d), (0, 0), (0, 0)), 'edge')
137
+ else:
138
+ self.batch_3d[i] = seq_3d[low_3d:high_3d]
139
+
140
+ if flip:
141
+ # Flip 3D joints
142
+ self.batch_3d[i, :, :, 0] *= -1
143
+ self.batch_3d[i, :, self.joints_left + self.joints_right] = \
144
+ self.batch_3d[i, :, self.joints_right + self.joints_left]
145
+
146
+ # Cameras
147
+ if self.cameras is not None:
148
+ self.batch_cam[i] = self.cameras[seq_i]
149
+ if flip:
150
+ # Flip horizontal distortion coefficients
151
+ self.batch_cam[i, 2] *= -1
152
+ self.batch_cam[i, 7] *= -1
153
+
154
+ if self.endless:
155
+ self.state = (b_i + 1, pairs)
156
+ if self.poses_3d is None and self.cameras is None:
157
+ yield None, None, self.batch_2d[:len(chunks)]
158
+ elif self.poses_3d is not None and self.cameras is None:
159
+ yield None, self.batch_3d[:len(chunks)], self.batch_2d[:len(chunks)]
160
+ elif self.poses_3d is None:
161
+ yield self.batch_cam[:len(chunks)], None, self.batch_2d[:len(chunks)]
162
+ else:
163
+ yield self.batch_cam[:len(chunks)], self.batch_3d[:len(chunks)], self.batch_2d[:len(chunks)]
164
+
165
+ if self.endless:
166
+ self.state = None
167
+ else:
168
+ enabled = False
169
+
170
+
171
+ class UnchunkedGenerator:
172
+ """
173
+ Non-batched data generator, used for testing.
174
+ Sequences are returned one at a time (i.e. batch size = 1), without chunking.
175
+
176
+ If data augmentation is enabled, the batches contain two sequences (i.e. batch size = 2),
177
+ the second of which is a mirrored version of the first.
178
+
179
+ Arguments:
180
+ cameras -- list of cameras, one element for each video (optional, used for semi-supervised training)
181
+ poses_3d -- list of ground-truth 3D poses, one element for each video (optional, used for supervised training)
182
+ poses_2d -- list of input 2D keypoints, one element for each video
183
+ pad -- 2D input padding to compensate for valid convolutions, per side (depends on the receptive field)
184
+ causal_shift -- asymmetric padding offset when causal convolutions are used (usually 0 or "pad")
185
+ augment -- augment the dataset by flipping poses horizontally
186
+ kps_left and kps_right -- list of left/right 2D keypoints if flipping is enabled
187
+ joints_left and joints_right -- list of left/right 3D joints if flipping is enabled
188
+ """
189
+
190
+ def __init__(self, cameras, poses_3d, poses_2d, pad=0, causal_shift=0,
191
+ augment=False, kps_left=None, kps_right=None, joints_left=None, joints_right=None):
192
+ assert poses_3d is None or len(poses_3d) == len(poses_2d)
193
+ assert cameras is None or len(cameras) == len(poses_2d)
194
+
195
+ self.augment = augment
196
+ self.kps_left = kps_left
197
+ self.kps_right = kps_right
198
+ self.joints_left = joints_left
199
+ self.joints_right = joints_right
200
+
201
+ self.pad = pad
202
+ self.causal_shift = causal_shift
203
+ self.cameras = [] if cameras is None else cameras
204
+ self.poses_3d = [] if poses_3d is None else poses_3d
205
+ self.poses_2d = poses_2d
206
+
207
+ def num_frames(self):
208
+ count = 0
209
+ for p in self.poses_2d:
210
+ count += p.shape[0]
211
+ return count
212
+
213
+ def augment_enabled(self):
214
+ return self.augment
215
+
216
+ def set_augment(self, augment):
217
+ self.augment = augment
218
+
219
+ def next_epoch(self):
220
+ for seq_cam, seq_3d, seq_2d in zip_longest(self.cameras, self.poses_3d, self.poses_2d):
221
+ batch_cam = None if seq_cam is None else np.expand_dims(seq_cam, axis=0)
222
+ batch_3d = None if seq_3d is None else np.expand_dims(seq_3d, axis=0)
223
+ # 2D input padding to compensate for valid convolutions, per side (depends on the receptive field)
224
+ batch_2d = np.expand_dims(np.pad(seq_2d,
225
+ ((self.pad + self.causal_shift, self.pad - self.causal_shift), (0, 0), (0, 0)),
226
+ 'edge'), axis=0)
227
+ if self.augment:
228
+ # Append flipped version
229
+ if batch_cam is not None:
230
+ batch_cam = np.concatenate((batch_cam, batch_cam), axis=0)
231
+ batch_cam[1, 2] *= -1
232
+ batch_cam[1, 7] *= -1
233
+
234
+ if batch_3d is not None:
235
+ batch_3d = np.concatenate((batch_3d, batch_3d), axis=0)
236
+ batch_3d[1, :, :, 0] *= -1
237
+ batch_3d[1, :, self.joints_left + self.joints_right] = batch_3d[1, :, self.joints_right + self.joints_left]
238
+
239
+ batch_2d = np.concatenate((batch_2d, batch_2d), axis=0)
240
+ batch_2d[1, :, :, 0] *= -1
241
+ batch_2d[1, :, self.kps_left + self.kps_right] = batch_2d[1, :, self.kps_right + self.kps_left]
242
+
243
+ yield batch_cam, batch_3d, batch_2d
244
+
245
+ class Evaluate_Generator:
246
+ """
247
+ Batched data generator, used for training.
248
+ The sequences are split into equal-length chunks and padded as necessary.
249
+ Arguments:
250
+ batch_size -- the batch size to use for training
251
+ cameras -- list of cameras, one element for each video (optional, used for semi-supervised training)
252
+ poses_3d -- list of ground-truth 3D poses, one element for each video (optional, used for supervised training)
253
+ poses_2d -- list of input 2D keypoints, one element for each video
254
+ chunk_length -- number of output frames to predict for each training example (usually 1)
255
+ pad -- 2D input padding to compensate for valid convolutions, per side (depends on the receptive field)
256
+ causal_shift -- asymmetric padding offset when causal convolutions are used (usually 0 or "pad")
257
+ shuffle -- randomly shuffle the dataset before each epoch
258
+ random_seed -- initial seed to use for the random generator
259
+ augment -- augment the dataset by flipping poses horizontally
260
+ kps_left and kps_right -- list of left/right 2D keypoints if flipping is enabled
261
+ joints_left and joints_right -- list of left/right 3D joints if flipping is enabled
262
+ """
263
+
264
+ def __init__(self, batch_size, cameras, poses_3d, poses_2d,
265
+ chunk_length, pad=0, causal_shift=0,
266
+ shuffle=True, random_seed=1234,
267
+ augment=False, kps_left=None, kps_right=None, joints_left=None, joints_right=None,
268
+ endless=False):
269
+ assert poses_3d is None or len(poses_3d) == len(poses_2d), (len(poses_3d), len(poses_2d))
270
+ assert cameras is None or len(cameras) == len(poses_2d)
271
+
272
+ # Build lineage info
273
+ pairs = [] # (seq_idx, start_frame, end_frame, flip) tuples
274
+ for i in range(len(poses_2d)):
275
+ assert poses_3d is None or poses_3d[i].shape[0] == poses_3d[i].shape[0]
276
+ n_chunks = (poses_2d[i].shape[0] + chunk_length - 1) // chunk_length
277
+ offset = (n_chunks * chunk_length - poses_2d[i].shape[0]) // 2
278
+ bounds = np.arange(n_chunks + 1) * chunk_length - offset
279
+ augment_vector = np.full(len(bounds - 1), False, dtype=bool)
280
+ pairs += zip(np.repeat(i, len(bounds - 1)), bounds[:-1], bounds[1:], augment_vector)
281
+
282
+ # Initialize buffers
283
+ if cameras is not None:
284
+ self.batch_cam = np.empty((batch_size, cameras[0].shape[-1]))
285
+ if poses_3d is not None:
286
+ self.batch_3d = np.empty((batch_size, chunk_length, poses_3d[0].shape[-2], poses_3d[0].shape[-1]))
287
+
288
+ if augment:
289
+ self.batch_2d_flip = np.empty(
290
+ (batch_size, chunk_length + 2 * pad, poses_2d[0].shape[-2], poses_2d[0].shape[-1]))
291
+ self.batch_2d = np.empty((batch_size, chunk_length + 2 * pad, poses_2d[0].shape[-2], poses_2d[0].shape[-1]))
292
+ else:
293
+ self.batch_2d = np.empty((batch_size, chunk_length + 2 * pad, poses_2d[0].shape[-2], poses_2d[0].shape[-1]))
294
+
295
+ self.num_batches = (len(pairs) + batch_size - 1) // batch_size
296
+ self.batch_size = batch_size
297
+ self.random = np.random.RandomState(random_seed)
298
+ self.pairs = pairs
299
+ self.shuffle = shuffle
300
+ self.pad = pad
301
+ self.causal_shift = causal_shift
302
+ self.endless = endless
303
+ self.state = None
304
+
305
+ self.cameras = cameras
306
+ self.poses_3d = poses_3d
307
+ self.poses_2d = poses_2d
308
+
309
+ self.augment = augment
310
+ self.kps_left = kps_left
311
+ self.kps_right = kps_right
312
+ self.joints_left = joints_left
313
+ self.joints_right = joints_right
314
+
315
+ def num_frames(self):
316
+ return self.num_batches * self.batch_size
317
+
318
+ def random_state(self):
319
+ return self.random
320
+
321
+ def set_random_state(self, random):
322
+ self.random = random
323
+
324
+ def augment_enabled(self):
325
+ return self.augment
326
+
327
+ def next_pairs(self):
328
+ if self.state is None:
329
+ if self.shuffle:
330
+ pairs = self.random.permutation(self.pairs)
331
+ else:
332
+ pairs = self.pairs
333
+ return 0, pairs
334
+ else:
335
+ return self.state
336
+
337
+ def next_epoch(self):
338
+ enabled = True
339
+ while enabled:
340
+ start_idx, pairs = self.next_pairs()
341
+ for b_i in range(start_idx, self.num_batches):
342
+ chunks = pairs[b_i * self.batch_size: (b_i + 1) * self.batch_size]
343
+ for i, (seq_i, start_3d, end_3d, flip) in enumerate(chunks):
344
+ start_2d = start_3d - self.pad - self.causal_shift
345
+ end_2d = end_3d + self.pad - self.causal_shift
346
+
347
+ # 2D poses
348
+ seq_2d = self.poses_2d[seq_i]
349
+ low_2d = max(start_2d, 0)
350
+ high_2d = min(end_2d, seq_2d.shape[0])
351
+ pad_left_2d = low_2d - start_2d
352
+ pad_right_2d = end_2d - high_2d
353
+ if pad_left_2d != 0 or pad_right_2d != 0:
354
+ self.batch_2d[i] = np.pad(seq_2d[low_2d:high_2d], ((pad_left_2d, pad_right_2d), (0, 0), (0, 0)),
355
+ 'edge')
356
+ if self.augment:
357
+ self.batch_2d_flip[i] = np.pad(seq_2d[low_2d:high_2d],
358
+ ((pad_left_2d, pad_right_2d), (0, 0), (0, 0)),
359
+ 'edge')
360
+
361
+ else:
362
+ self.batch_2d[i] = seq_2d[low_2d:high_2d]
363
+ if self.augment:
364
+ self.batch_2d_flip[i] = seq_2d[low_2d:high_2d]
365
+
366
+ if self.augment:
367
+ self.batch_2d_flip[i, :, :, 0] *= -1
368
+ self.batch_2d_flip[i, :, self.kps_left + self.kps_right] = self.batch_2d_flip[i, :,
369
+ self.kps_right + self.kps_left]
370
+
371
+ # 3D poses
372
+ if self.poses_3d is not None:
373
+ seq_3d = self.poses_3d[seq_i]
374
+ low_3d = max(start_3d, 0)
375
+ high_3d = min(end_3d, seq_3d.shape[0])
376
+ pad_left_3d = low_3d - start_3d
377
+ pad_right_3d = end_3d - high_3d
378
+ if pad_left_3d != 0 or pad_right_3d != 0:
379
+ self.batch_3d[i] = np.pad(seq_3d[low_3d:high_3d],
380
+ ((pad_left_3d, pad_right_3d), (0, 0), (0, 0)), 'edge')
381
+ else:
382
+ self.batch_3d[i] = seq_3d[low_3d:high_3d]
383
+
384
+ if flip:
385
+ self.batch_3d[i, :, :, 0] *= -1
386
+ self.batch_3d[i, :, self.joints_left + self.joints_right] = \
387
+ self.batch_3d[i, :, self.joints_right + self.joints_left]
388
+
389
+ # Cameras
390
+ if self.cameras is not None:
391
+ self.batch_cam[i] = self.cameras[seq_i]
392
+ if flip:
393
+ # Flip horizontal distortion coefficients
394
+ self.batch_cam[i, 2] *= -1
395
+ self.batch_cam[i, 7] *= -1
396
+
397
+ if self.endless:
398
+ self.state = (b_i + 1, pairs)
399
+
400
+ if self.augment:
401
+ if self.poses_3d is None and self.cameras is None:
402
+ yield None, None, self.batch_2d[:len(chunks)], self.batch_2d_flip[:len(chunks)]
403
+ elif self.poses_3d is not None and self.cameras is None:
404
+ yield None, self.batch_3d[:len(chunks)], self.batch_2d[:len(chunks)], self.batch_2d_flip[
405
+ :len(chunks)]
406
+ elif self.poses_3d is None:
407
+ yield self.batch_cam[:len(chunks)], None, self.batch_2d[:len(chunks)], self.batch_2d_flip[
408
+ :len(chunks)]
409
+ else:
410
+ yield self.batch_cam[:len(chunks)], self.batch_3d[:len(chunks)], self.batch_2d[:len(
411
+ chunks)], self.batch_2d_flip[:len(chunks)]
412
+ else:
413
+ if self.poses_3d is None and self.cameras is None:
414
+ yield None, None, self.batch_2d[:len(chunks)]
415
+ elif self.poses_3d is not None and self.cameras is None:
416
+ yield None, self.batch_3d[:len(chunks)], self.batch_2d[:len(chunks)]
417
+ elif self.poses_3d is None:
418
+ yield self.batch_cam[:len(chunks)], None, self.batch_2d[:len(chunks)]
419
+ else:
420
+ yield self.batch_cam[:len(chunks)], self.batch_3d[:len(chunks)], self.batch_2d[:len(chunks)]
421
+
422
+ if self.endless:
423
+ self.state = None
424
+ else:
425
+ enabled = False
common/h36m_dataset.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ import copy
9
+
10
+ import numpy as np
11
+
12
+ from common.camera import normalize_screen_coordinates
13
+ from common.mocap_dataset import MocapDataset
14
+ from common.skeleton import Skeleton
15
+
16
+ h36m_skeleton = Skeleton(parents=[-1, 0, 1, 2, 3, 4, 0, 6, 7, 8, 9, 0, 11, 12, 13, 14, 12,
17
+ 16, 17, 18, 19, 20, 19, 22, 12, 24, 25, 26, 27, 28, 27, 30],
18
+ joints_left=[6, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 22, 23],
19
+ joints_right=[1, 2, 3, 4, 5, 24, 25, 26, 27, 28, 29, 30, 31])
20
+
21
+ h36m_cameras_intrinsic_params = [
22
+ {
23
+ 'id': '54138969',
24
+ 'center': [512.54150390625, 515.4514770507812],
25
+ 'focal_length': [1145.0494384765625, 1143.7811279296875],
26
+ 'radial_distortion': [-0.20709891617298126, 0.24777518212795258, -0.0030751503072679043],
27
+ 'tangential_distortion': [-0.0009756988729350269, -0.00142447161488235],
28
+ 'res_w': 1000,
29
+ 'res_h': 1002,
30
+ 'azimuth': 70, # Only used for visualization
31
+ },
32
+ {
33
+ 'id': '55011271',
34
+ 'center': [508.8486328125, 508.0649108886719],
35
+ 'focal_length': [1149.6756591796875, 1147.5916748046875],
36
+ 'radial_distortion': [-0.1942136287689209, 0.2404085397720337, 0.006819975562393665],
37
+ 'tangential_distortion': [-0.0016190266469493508, -0.0027408944442868233],
38
+ 'res_w': 1000,
39
+ 'res_h': 1000,
40
+ 'azimuth': -70, # Only used for visualization
41
+ },
42
+ {
43
+ 'id': '58860488',
44
+ 'center': [519.8158569335938, 501.40264892578125],
45
+ 'focal_length': [1149.1407470703125, 1148.7989501953125],
46
+ 'radial_distortion': [-0.2083381861448288, 0.25548800826072693, -0.0024604974314570427],
47
+ 'tangential_distortion': [0.0014843869721516967, -0.0007599993259645998],
48
+ 'res_w': 1000,
49
+ 'res_h': 1000,
50
+ 'azimuth': 110, # Only used for visualization
51
+ },
52
+ {
53
+ 'id': '60457274',
54
+ 'center': [514.9682006835938, 501.88201904296875],
55
+ 'focal_length': [1145.5113525390625, 1144.77392578125],
56
+ 'radial_distortion': [-0.198384091258049, 0.21832367777824402, -0.008947807364165783],
57
+ 'tangential_distortion': [-0.0005872055771760643, -0.0018133620033040643],
58
+ 'res_w': 1000,
59
+ 'res_h': 1002,
60
+ 'azimuth': -110, # Only used for visualization
61
+ },
62
+ ]
63
+
64
+ h36m_cameras_extrinsic_params = {
65
+ 'S1': [
66
+ {
67
+ 'orientation': [0.1407056450843811, -0.1500701755285263, -0.755240797996521, 0.6223280429840088],
68
+ 'translation': [1841.1070556640625, 4955.28466796875, 1563.4454345703125],
69
+ },
70
+ {
71
+ 'orientation': [0.6157187819480896, -0.764836311340332, -0.14833825826644897, 0.11794740706682205],
72
+ 'translation': [1761.278564453125, -5078.0068359375, 1606.2650146484375],
73
+ },
74
+ {
75
+ 'orientation': [0.14651472866535187, -0.14647851884365082, 0.7653023600578308, -0.6094175577163696],
76
+ 'translation': [-1846.7777099609375, 5215.04638671875, 1491.972412109375],
77
+ },
78
+ {
79
+ 'orientation': [0.5834008455276489, -0.7853162288665771, 0.14548823237419128, -0.14749594032764435],
80
+ 'translation': [-1794.7896728515625, -3722.698974609375, 1574.8927001953125],
81
+ },
82
+ ],
83
+ 'S2': [
84
+ {},
85
+ {},
86
+ {},
87
+ {},
88
+ ],
89
+ 'S3': [
90
+ {},
91
+ {},
92
+ {},
93
+ {},
94
+ ],
95
+ 'S4': [
96
+ {},
97
+ {},
98
+ {},
99
+ {},
100
+ ],
101
+ 'S5': [
102
+ {
103
+ 'orientation': [0.1467377245426178, -0.162370964884758, -0.7551892995834351, 0.6178938746452332],
104
+ 'translation': [2097.3916015625, 4880.94482421875, 1605.732421875],
105
+ },
106
+ {
107
+ 'orientation': [0.6159758567810059, -0.7626792192459106, -0.15728192031383514, 0.1189815029501915],
108
+ 'translation': [2031.7008056640625, -5167.93310546875, 1612.923095703125],
109
+ },
110
+ {
111
+ 'orientation': [0.14291371405124664, -0.12907841801643372, 0.7678384780883789, -0.6110143065452576],
112
+ 'translation': [-1620.5948486328125, 5171.65869140625, 1496.43701171875],
113
+ },
114
+ {
115
+ 'orientation': [0.5920479893684387, -0.7814217805862427, 0.1274748593568802, -0.15036417543888092],
116
+ 'translation': [-1637.1737060546875, -3867.3173828125, 1547.033203125],
117
+ },
118
+ ],
119
+ 'S6': [
120
+ {
121
+ 'orientation': [0.1337897777557373, -0.15692396461963654, -0.7571090459823608, 0.6198879480361938],
122
+ 'translation': [1935.4517822265625, 4950.24560546875, 1618.0838623046875],
123
+ },
124
+ {
125
+ 'orientation': [0.6147197484970093, -0.7628812789916992, -0.16174767911434174, 0.11819244921207428],
126
+ 'translation': [1969.803955078125, -5128.73876953125, 1632.77880859375],
127
+ },
128
+ {
129
+ 'orientation': [0.1529948115348816, -0.13529130816459656, 0.7646096348762512, -0.6112781167030334],
130
+ 'translation': [-1769.596435546875, 5185.361328125, 1476.993408203125],
131
+ },
132
+ {
133
+ 'orientation': [0.5916101336479187, -0.7804774045944214, 0.12832270562648773, -0.1561593860387802],
134
+ 'translation': [-1721.668701171875, -3884.13134765625, 1540.4879150390625],
135
+ },
136
+ ],
137
+ 'S7': [
138
+ {
139
+ 'orientation': [0.1435241848230362, -0.1631336808204651, -0.7548328638076782, 0.6188824772834778],
140
+ 'translation': [1974.512939453125, 4926.3544921875, 1597.8326416015625],
141
+ },
142
+ {
143
+ 'orientation': [0.6141672730445862, -0.7638262510299683, -0.1596645563840866, 0.1177929937839508],
144
+ 'translation': [1937.0584716796875, -5119.7900390625, 1631.5665283203125],
145
+ },
146
+ {
147
+ 'orientation': [0.14550060033798218, -0.12874816358089447, 0.7660516500473022, -0.6127139329910278],
148
+ 'translation': [-1741.8111572265625, 5208.24951171875, 1464.8245849609375],
149
+ },
150
+ {
151
+ 'orientation': [0.5912848114967346, -0.7821764349937439, 0.12445473670959473, -0.15196487307548523],
152
+ 'translation': [-1734.7105712890625, -3832.42138671875, 1548.5830078125],
153
+ },
154
+ ],
155
+ 'S8': [
156
+ {
157
+ 'orientation': [0.14110587537288666, -0.15589867532253265, -0.7561917304992676, 0.619644045829773],
158
+ 'translation': [2150.65185546875, 4896.1611328125, 1611.9046630859375],
159
+ },
160
+ {
161
+ 'orientation': [0.6169601678848267, -0.7647668123245239, -0.14846350252628326, 0.11158157885074615],
162
+ 'translation': [2219.965576171875, -5148.453125, 1613.0440673828125],
163
+ },
164
+ {
165
+ 'orientation': [0.1471444070339203, -0.13377119600772858, 0.7670128345489502, -0.6100369691848755],
166
+ 'translation': [-1571.2215576171875, 5137.0185546875, 1498.1761474609375],
167
+ },
168
+ {
169
+ 'orientation': [0.5927824378013611, -0.7825870513916016, 0.12147816270589828, -0.14631995558738708],
170
+ 'translation': [-1476.913330078125, -3896.7412109375, 1547.97216796875],
171
+ },
172
+ ],
173
+ 'S9': [
174
+ {
175
+ 'orientation': [0.15540587902069092, -0.15548215806484222, -0.7532095313072205, 0.6199594736099243],
176
+ 'translation': [2044.45849609375, 4935.1171875, 1481.2275390625],
177
+ },
178
+ {
179
+ 'orientation': [0.618784487247467, -0.7634735107421875, -0.14132238924503326, 0.11933968216180801],
180
+ 'translation': [1990.959716796875, -5123.810546875, 1568.8048095703125],
181
+ },
182
+ {
183
+ 'orientation': [0.13357827067375183, -0.1367100477218628, 0.7689454555511475, -0.6100738644599915],
184
+ 'translation': [-1670.9921875, 5211.98583984375, 1528.387939453125],
185
+ },
186
+ {
187
+ 'orientation': [0.5879399180412292, -0.7823407053947449, 0.1427614390850067, -0.14794869720935822],
188
+ 'translation': [-1696.04345703125, -3827.099853515625, 1591.4127197265625],
189
+ },
190
+ ],
191
+ 'S11': [
192
+ {
193
+ 'orientation': [0.15232472121715546, -0.15442320704460144, -0.7547563314437866, 0.6191070079803467],
194
+ 'translation': [2098.440185546875, 4926.5546875, 1500.278564453125],
195
+ },
196
+ {
197
+ 'orientation': [0.6189449429512024, -0.7600917220115662, -0.15300633013248444, 0.1255258321762085],
198
+ 'translation': [2083.182373046875, -4912.1728515625, 1561.07861328125],
199
+ },
200
+ {
201
+ 'orientation': [0.14943228662014008, -0.15650227665901184, 0.7681233882904053, -0.6026304364204407],
202
+ 'translation': [-1609.8153076171875, 5177.3359375, 1537.896728515625],
203
+ },
204
+ {
205
+ 'orientation': [0.5894251465797424, -0.7818877100944519, 0.13991211354732513, -0.14715361595153809],
206
+ 'translation': [-1590.738037109375, -3854.1689453125, 1578.017578125],
207
+ },
208
+ ],
209
+ }
210
+
211
+
212
+ class Human36mDataset(MocapDataset):
213
+ def __init__(self, path, remove_static_joints=True):
214
+ super().__init__(fps=50, skeleton=h36m_skeleton)
215
+
216
+ self._cameras = copy.deepcopy(h36m_cameras_extrinsic_params)
217
+ for cameras in self._cameras.values():
218
+ for i, cam in enumerate(cameras):
219
+ cam.update(h36m_cameras_intrinsic_params[i])
220
+ for k, v in cam.items():
221
+ if k not in ['id', 'res_w', 'res_h']:
222
+ cam[k] = np.array(v, dtype='float32')
223
+
224
+ # Normalize camera frame
225
+ cam['center'] = normalize_screen_coordinates(cam['center'], w=cam['res_w'], h=cam['res_h']).astype('float32')
226
+ cam['focal_length'] = cam['focal_length'] / cam['res_w'] * 2
227
+ if 'translation' in cam:
228
+ cam['translation'] = cam['translation'] / 1000 # mm to meters
229
+
230
+ # Add intrinsic parameters vector
231
+ cam['intrinsic'] = np.concatenate((cam['focal_length'],
232
+ cam['center'],
233
+ cam['radial_distortion'],
234
+ cam['tangential_distortion']))
235
+
236
+ # Load serialized dataset
237
+ data = np.load(path)['positions_3d'].item()
238
+
239
+ self._data = {}
240
+ for subject, actions in data.items():
241
+ self._data[subject] = {}
242
+ for action_name, positions in actions.items():
243
+ self._data[subject][action_name] = {
244
+ 'positions': positions,
245
+ 'cameras': self._cameras[subject],
246
+ }
247
+
248
+ # import ipdb;ipdb.set_trace()
249
+ if remove_static_joints:
250
+ # Bring the skeleton to 17 joints instead of the original 32
251
+ self.remove_joints([4, 5, 9, 10, 11, 16, 20, 21, 22, 23, 24, 28, 29, 30, 31])
252
+
253
+ # Rewire shoulders to the correct parents
254
+ self._skeleton._parents[11] = 8
255
+ self._skeleton._parents[14] = 8
256
+
257
+ def supports_semi_supervised(self):
258
+ return True
common/humaneva_dataset.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ import copy
9
+
10
+ import numpy as np
11
+
12
+ from common.mocap_dataset import MocapDataset
13
+ from common.skeleton import Skeleton
14
+
15
+ humaneva_skeleton = Skeleton(parents=[-1, 0, 1, 2, 3, 1, 5, 6, 0, 8, 9, 0, 11, 12, 1],
16
+ joints_left=[2, 3, 4, 8, 9, 10],
17
+ joints_right=[5, 6, 7, 11, 12, 13])
18
+
19
+ humaneva_cameras_intrinsic_params = [
20
+ {
21
+ 'id': 'C1',
22
+ 'res_w': 640,
23
+ 'res_h': 480,
24
+ 'azimuth': 0, # Only used for visualization
25
+ },
26
+ {
27
+ 'id': 'C2',
28
+ 'res_w': 640,
29
+ 'res_h': 480,
30
+ 'azimuth': -90, # Only used for visualization
31
+ },
32
+ {
33
+ 'id': 'C3',
34
+ 'res_w': 640,
35
+ 'res_h': 480,
36
+ 'azimuth': 90, # Only used for visualization
37
+ },
38
+ ]
39
+
40
+ humaneva_cameras_extrinsic_params = {
41
+ 'S1': [
42
+ {
43
+ 'orientation': [0.424207, -0.4983646, -0.5802981, 0.4847012],
44
+ 'translation': [4062.227, 663.2477, 1528.397],
45
+ },
46
+ {
47
+ 'orientation': [0.6503354, -0.7481602, -0.0919284, 0.0941766],
48
+ 'translation': [844.8131, -3805.2092, 1504.9929],
49
+ },
50
+ {
51
+ 'orientation': [0.0664734, -0.0690535, 0.7416416, -0.6639132],
52
+ 'translation': [-797.67377, 3916.3174, 1433.6602],
53
+ },
54
+ ],
55
+ 'S2': [
56
+ {
57
+ 'orientation': [0.4214752, -0.4961493, -0.5838273, 0.4851187],
58
+ 'translation': [4112.9121, 626.4929, 1545.2988],
59
+ },
60
+ {
61
+ 'orientation': [0.6501393, -0.7476588, -0.0954617, 0.0959808],
62
+ 'translation': [923.5740, -3877.9243, 1504.5518],
63
+ },
64
+ {
65
+ 'orientation': [0.0699353, -0.0712403, 0.7421637, -0.662742],
66
+ 'translation': [-781.4915, 3838.8853, 1444.9929],
67
+ },
68
+ ],
69
+ 'S3': [
70
+ {
71
+ 'orientation': [0.424207, -0.4983646, -0.5802981, 0.4847012],
72
+ 'translation': [4062.2271, 663.2477, 1528.3970],
73
+ },
74
+ {
75
+ 'orientation': [0.6503354, -0.7481602, -0.0919284, 0.0941766],
76
+ 'translation': [844.8131, -3805.2092, 1504.9929],
77
+ },
78
+ {
79
+ 'orientation': [0.0664734, -0.0690535, 0.7416416, -0.6639132],
80
+ 'translation': [-797.6738, 3916.3174, 1433.6602],
81
+ },
82
+ ],
83
+ 'S4': [
84
+ {},
85
+ {},
86
+ {},
87
+ ],
88
+
89
+ }
90
+
91
+
92
+ class HumanEvaDataset(MocapDataset):
93
+ def __init__(self, path):
94
+ super().__init__(fps=60, skeleton=humaneva_skeleton)
95
+
96
+ self._cameras = copy.deepcopy(humaneva_cameras_extrinsic_params)
97
+ for cameras in self._cameras.values():
98
+ for i, cam in enumerate(cameras):
99
+ cam.update(humaneva_cameras_intrinsic_params[i])
100
+ for k, v in cam.items():
101
+ if k not in ['id', 'res_w', 'res_h']:
102
+ cam[k] = np.array(v, dtype='float32')
103
+ if 'translation' in cam:
104
+ cam['translation'] = cam['translation'] / 1000 # mm to meters
105
+
106
+ for subject in list(self._cameras.keys()):
107
+ data = self._cameras[subject]
108
+ del self._cameras[subject]
109
+ for prefix in ['Train/', 'Validate/', 'Unlabeled/Train/', 'Unlabeled/Validate/', 'Unlabeled/']:
110
+ self._cameras[prefix + subject] = data
111
+
112
+ # Load serialized dataset
113
+ data = np.load(path)['positions_3d'].item()
114
+
115
+ self._data = {}
116
+ for subject, actions in data.items():
117
+ self._data[subject] = {}
118
+ for action_name, positions in actions.items():
119
+ self._data[subject][action_name] = {
120
+ 'positions': positions,
121
+ 'cameras': self._cameras[subject],
122
+ }
common/inference_3d.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+ import hashlib
8
+ import os
9
+ import pathlib
10
+ import shutil
11
+ import sys
12
+ import time
13
+
14
+ import cv2
15
+ import numpy as np
16
+ import torch
17
+ from torch.autograd import Variable
18
+
19
+ def get_varialbe(target):
20
+ num = len(target)
21
+ var = []
22
+
23
+ for i in range(num):
24
+ temp = Variable(target[i]).contiguous().cuda().type(torch.cuda.FloatTensor)
25
+ var.append(temp)
26
+
27
+ return var
28
+ def input_augmentation(input_2D, input_2D_flip, model_trans, joints_left, joints_right):
29
+ B, T, J, C = input_2D.shape
30
+
31
+ input_2D_flip = input_2D_flip.view(B, T, J, C, 1).permute(0, 3, 1, 2, 4)
32
+ input_2D_non_flip = input_2D.view(B, T, J, C, 1).permute(0, 3, 1, 2, 4)
33
+
34
+ output_3D_flip, output_3D_flip_VTE = model_trans(input_2D_flip)
35
+
36
+ output_3D_flip_VTE[:, 0] *= -1
37
+ output_3D_flip[:, 0] *= -1
38
+
39
+ output_3D_flip_VTE[:, :, :, joints_left + joints_right] = output_3D_flip_VTE[:, :, :, joints_right + joints_left]
40
+ output_3D_flip[:, :, :, joints_left + joints_right] = output_3D_flip[:, :, :, joints_right + joints_left]
41
+
42
+ output_3D_non_flip, output_3D_non_flip_VTE = model_trans(input_2D_non_flip)
43
+
44
+ output_3D_VTE = (output_3D_non_flip_VTE + output_3D_flip_VTE) / 2
45
+ output_3D = (output_3D_non_flip + output_3D_flip) / 2
46
+
47
+ input_2D = input_2D_non_flip
48
+
49
+ return input_2D, output_3D, output_3D_VTE
50
+
51
+ def step(opt, dataLoader, model, optimizer=None, epoch=None):
52
+ model_trans = model['trans']
53
+
54
+ model_trans.eval()
55
+
56
+ joints_left = [4, 5, 6, 11, 12, 13]
57
+ joints_right = [1, 2, 3, 14, 15, 16]
58
+ epoch_cnt=0
59
+ out = []
60
+ for _, batch, batch_2d, batch_2d_flip in dataLoader.next_epoch():
61
+ #[gt_3D, input_2D] = get_varialbe([batch, batch_2d])
62
+ #input_2D = Variable(batch_2d).contiguous().cuda().type(torch.cuda.FloatTensor)
63
+ input_2D = torch.from_numpy(batch_2d.astype('float32'))
64
+ input_2D_flip = torch.from_numpy(batch_2d_flip.astype('float32'))
65
+ if torch.cuda.is_available():
66
+ input_2D = input_2D.cuda()
67
+ input_2D_flip = input_2D_flip.cuda()
68
+
69
+ N = input_2D.size(0)
70
+
71
+ # out_target = gt_3D.clone().view(N, -1, opt.out_joints, opt.out_channels)
72
+ # out_target[:, :, 0] = 0
73
+ # gt_3D = gt_3D.view(N, -1, opt.out_joints, opt.out_channels).type(torch.cuda.FloatTensor)
74
+ #
75
+ # if out_target.size(1) > 1:
76
+ # out_target_single = out_target[:, opt.pad].unsqueeze(1)
77
+ # gt_3D_single = gt_3D[:, opt.pad].unsqueeze(1)
78
+ # else:
79
+ # out_target_single = out_target
80
+ # gt_3D_single = gt_3D
81
+
82
+
83
+ input_2D, output_3D, output_3D_VTE = input_augmentation(input_2D, input_2D_flip, model_trans, joints_left, joints_right)
84
+
85
+
86
+ output_3D_VTE = output_3D_VTE.permute(0, 2, 3, 4, 1).contiguous().view(N, -1, opt.out_joints, opt.out_channels)
87
+ output_3D = output_3D.permute(0, 2, 3, 4, 1).contiguous().view(N, -1, opt.out_joints, opt.out_channels)
88
+
89
+ output_3D_single = output_3D
90
+
91
+
92
+ pred_out = output_3D_single
93
+
94
+ input_2D = input_2D.permute(0, 2, 3, 1, 4).view(N, -1, opt.n_joints, 2)
95
+
96
+ pred_out[:, :, 0, :] = 0
97
+
98
+ if epoch_cnt == 0:
99
+ out = pred_out.squeeze(1).cpu()
100
+ else:
101
+ out = torch.cat((out, pred_out.squeeze(1).cpu()), dim=0)
102
+ epoch_cnt +=1
103
+ return out.numpy()
104
+
105
+ def val(opt, val_loader, model):
106
+ with torch.no_grad():
107
+ return step(opt, val_loader, model)
common/jpt_arguments.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ import argparse
9
+
10
+
11
+ def parse_args():
12
+ parser = argparse.ArgumentParser(description='Training script')
13
+
14
+ # General arguments
15
+ parser.add_argument('-d', '--dataset', default='h36m', type=str, metavar='NAME', help='target dataset') # h36m or humaneva
16
+ parser.add_argument('-k', '--keypoints', default='cpn_ft_h36m_dbb', type=str, metavar='NAME', help='2D detections to use')
17
+ parser.add_argument('-str', '--subjects-train', default='S1,S5,S6,S7,S8', type=str, metavar='LIST',
18
+ help='training subjects separated by comma')
19
+ parser.add_argument('-ste', '--subjects-test', default='S9,S11', type=str, metavar='LIST', help='test subjects separated by comma')
20
+ parser.add_argument('-sun', '--subjects-unlabeled', default='', type=str, metavar='LIST',
21
+ help='unlabeled subjects separated by comma for self-supervision')
22
+ parser.add_argument('-a', '--actions', default='*', type=str, metavar='LIST',
23
+ help='actions to train/test on, separated by comma, or * for all')
24
+ parser.add_argument('-c', '--checkpoint', default='checkpoint', type=str, metavar='PATH',
25
+ help='checkpoint directory')
26
+ parser.add_argument('--checkpoint-frequency', default=10, type=int, metavar='N',
27
+ help='create a checkpoint every N epochs')
28
+ parser.add_argument('-r', '--resume', default='', type=str, metavar='FILENAME',
29
+ help='checkpoint to resume (file name)')
30
+ parser.add_argument('--evaluate', default='pretrained_h36m_detectron_coco.bin', type=str, metavar='FILENAME', help='checkpoint to evaluate (file name)')
31
+ parser.add_argument('--render', action='store_true', help='visualize a particular video')
32
+ parser.add_argument('--by-subject', action='store_true', help='break down error by subject (on evaluation)')
33
+ parser.add_argument('--export-training-curves', action='store_true', help='save training curves as .png images')
34
+
35
+ # Model arguments
36
+ parser.add_argument('-s', '--stride', default=1, type=int, metavar='N', help='chunk size to use during training')
37
+ parser.add_argument('-e', '--epochs', default=60, type=int, metavar='N', help='number of training epochs')
38
+ parser.add_argument('-b', '--batch-size', default=1024, type=int, metavar='N', help='batch size in terms of predicted frames')
39
+ parser.add_argument('-drop', '--dropout', default=0.25, type=float, metavar='P', help='dropout probability')
40
+ parser.add_argument('-lr', '--learning-rate', default=0.001, type=float, metavar='LR', help='initial learning rate')
41
+ parser.add_argument('-lrd', '--lr-decay', default=0.95, type=float, metavar='LR', help='learning rate decay per epoch')
42
+ parser.add_argument('-no-da', '--no-data-augmentation', dest='data_augmentation', action='store_false',
43
+ help='disable train-time flipping')
44
+ parser.add_argument('-no-tta', '--no-test-time-augmentation', dest='test_time_augmentation', action='store_false',
45
+ help='disable test-time flipping')
46
+ parser.add_argument('-arc', '--architecture', default='3,3,3,3,3', type=str, metavar='LAYERS', help='filter widths separated by comma')
47
+ parser.add_argument('--causal', action='store_true', help='use causal convolutions for real-time processing')
48
+ parser.add_argument('-ch', '--channels', default=1024, type=int, metavar='N', help='number of channels in convolution layers')
49
+
50
+ # Experimental
51
+ parser.add_argument('--subset', default=1, type=float, metavar='FRACTION', help='reduce dataset size by fraction')
52
+ parser.add_argument('--downsample', default=1, type=int, metavar='FACTOR', help='downsample frame rate by factor (semi-supervised)')
53
+ parser.add_argument('--warmup', default=1, type=int, metavar='N', help='warm-up epochs for semi-supervision')
54
+ parser.add_argument('--no-eval', action='store_true', help='disable epoch evaluation while training (small speed-up)')
55
+ parser.add_argument('--dense', action='store_true', help='use dense convolutions instead of dilated convolutions')
56
+ parser.add_argument('--disable-optimizations', action='store_true', help='disable optimized model for single-frame predictions')
57
+ parser.add_argument('--linear-projection', action='store_true', help='use only linear coefficients for semi-supervised projection')
58
+ parser.add_argument('--no-bone-length', action='store_false', dest='bone_length_term',
59
+ help='disable bone length term in semi-supervised settings')
60
+ parser.add_argument('--no-proj', action='store_true', help='disable projection for semi-supervised setting')
61
+
62
+ # Visualization
63
+ parser.add_argument('--viz-subject', type=str, metavar='STR', help='subject to render')
64
+ parser.add_argument('--viz-action', type=str, metavar='STR', help='action to render')
65
+ parser.add_argument('--viz-camera', type=int, default=0, metavar='N', help='camera to render')
66
+ parser.add_argument('--viz-video', type=str, metavar='PATH', help='path to input video')
67
+ parser.add_argument('--viz-skip', type=int, default=0, metavar='N', help='skip first N frames of input video')
68
+ parser.add_argument('--viz-output', type=str, metavar='PATH', help='output file name (.gif or .mp4)')
69
+ parser.add_argument('--viz-bitrate', type=int, default=30000, metavar='N', help='bitrate for mp4 videos')
70
+ parser.add_argument('--viz-no-ground-truth', action='store_true', help='do not show ground-truth poses')
71
+ parser.add_argument('--viz-limit', type=int, default=-1, metavar='N', help='only render first N frames')
72
+ parser.add_argument('--viz-downsample', type=int, default=1, metavar='N', help='downsample FPS by a factor N')
73
+ parser.add_argument('--viz-size', type=int, default=5, metavar='N', help='image size')
74
+ # self add
75
+ parser.add_argument('--input-npz', dest='input_npz', type=str, default='', help='input 2d numpy file')
76
+
77
+ parser.set_defaults(bone_length_term=True)
78
+ parser.set_defaults(data_augmentation=True)
79
+ parser.set_defaults(test_time_augmentation=True)
80
+
81
+ args = parser.parse_args(args=[])
82
+ # Check invalid configuration
83
+ if args.resume and args.evaluate:
84
+ print('Invalid flags: --resume and --evaluate cannot be set at the same time')
85
+ exit()
86
+
87
+ if args.export_training_curves and args.no_eval:
88
+ print('Invalid flags: --export-training-curves and --no-eval cannot be set at the same time')
89
+ exit()
90
+
91
+ # opt = parser.parse_args(args=[])
92
+ return args
common/loss.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ import numpy as np
9
+ import torch
10
+
11
+
12
+ def mpjpe(predicted, target):
13
+ """
14
+ Mean per-joint position error (i.e. mean Euclidean distance),
15
+ often referred to as "Protocol #1" in many papers.
16
+ """
17
+ assert predicted.shape == target.shape
18
+ return torch.mean(torch.norm(predicted - target, dim=len(target.shape) - 1))
19
+
20
+
21
+ def weighted_mpjpe(predicted, target, w):
22
+ """
23
+ Weighted mean per-joint position error (i.e. mean Euclidean distance)
24
+ """
25
+ assert predicted.shape == target.shape
26
+ assert w.shape[0] == predicted.shape[0]
27
+ return torch.mean(w * torch.norm(predicted - target, dim=len(target.shape) - 1))
28
+
29
+
30
+ def p_mpjpe(predicted, target):
31
+ """
32
+ Pose error: MPJPE after rigid alignment (scale, rotation, and translation),
33
+ often referred to as "Protocol #2" in many papers.
34
+ """
35
+ assert predicted.shape == target.shape
36
+
37
+ muX = np.mean(target, axis=1, keepdims=True)
38
+ muY = np.mean(predicted, axis=1, keepdims=True)
39
+
40
+ X0 = target - muX
41
+ Y0 = predicted - muY
42
+
43
+ normX = np.sqrt(np.sum(X0 ** 2, axis=(1, 2), keepdims=True))
44
+ normY = np.sqrt(np.sum(Y0 ** 2, axis=(1, 2), keepdims=True))
45
+
46
+ X0 /= normX
47
+ Y0 /= normY
48
+
49
+ H = np.matmul(X0.transpose(0, 2, 1), Y0)
50
+ U, s, Vt = np.linalg.svd(H)
51
+ V = Vt.transpose(0, 2, 1)
52
+ R = np.matmul(V, U.transpose(0, 2, 1))
53
+
54
+ # Avoid improper rotations (reflections), i.e. rotations with det(R) = -1
55
+ sign_detR = np.sign(np.expand_dims(np.linalg.det(R), axis=1))
56
+ V[:, :, -1] *= sign_detR
57
+ s[:, -1] *= sign_detR.flatten()
58
+ R = np.matmul(V, U.transpose(0, 2, 1)) # Rotation
59
+
60
+ tr = np.expand_dims(np.sum(s, axis=1, keepdims=True), axis=2)
61
+
62
+ a = tr * normX / normY # Scale
63
+ t = muX - a * np.matmul(muY, R) # Translation
64
+
65
+ # Perform rigid transformation on the input
66
+ predicted_aligned = a * np.matmul(predicted, R) + t
67
+
68
+ # Return MPJPE
69
+ return np.mean(np.linalg.norm(predicted_aligned - target, axis=len(target.shape) - 1))
70
+
71
+
72
+ def n_mpjpe(predicted, target):
73
+ """
74
+ Normalized MPJPE (scale only), adapted from:
75
+ https://github.com/hrhodin/UnsupervisedGeometryAwareRepresentationLearning/blob/master/losses/poses.py
76
+ """
77
+ assert predicted.shape == target.shape
78
+
79
+ norm_predicted = torch.mean(torch.sum(predicted ** 2, dim=3, keepdim=True), dim=2, keepdim=True)
80
+ norm_target = torch.mean(torch.sum(target * predicted, dim=3, keepdim=True), dim=2, keepdim=True)
81
+ scale = norm_target / norm_predicted
82
+ return mpjpe(scale * predicted, target)
83
+
84
+
85
+ def mean_velocity_error(predicted, target):
86
+ """
87
+ Mean per-joint velocity error (i.e. mean Euclidean distance of the 1st derivative)
88
+ """
89
+ assert predicted.shape == target.shape
90
+
91
+ velocity_predicted = np.diff(predicted, axis=0)
92
+ velocity_target = np.diff(target, axis=0)
93
+
94
+ return np.mean(np.linalg.norm(velocity_predicted - velocity_target, axis=len(target.shape) - 1))
common/mocap_dataset.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+
9
+ class MocapDataset:
10
+ def __init__(self, fps, skeleton):
11
+ self._skeleton = skeleton
12
+ self._fps = fps
13
+ self._data = None # Must be filled by subclass
14
+ self._cameras = None # Must be filled by subclass
15
+
16
+ def remove_joints(self, joints_to_remove):
17
+ kept_joints = self._skeleton.remove_joints(joints_to_remove)
18
+ for subject in self._data.keys():
19
+ for action in self._data[subject].keys():
20
+ s = self._data[subject][action]
21
+ s['positions'] = s['positions'][:, kept_joints]
22
+
23
+ def __getitem__(self, key):
24
+ return self._data[key]
25
+
26
+ def subjects(self):
27
+ return self._data.keys()
28
+
29
+ def fps(self):
30
+ return self._fps
31
+
32
+ def skeleton(self):
33
+ return self._skeleton
34
+
35
+ def cameras(self):
36
+ return self._cameras
37
+
38
+ def supports_semi_supervised(self):
39
+ # This method can be overridden
40
+ return False
common/model.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ import torch.nn as nn
9
+
10
+
11
+ class TemporalModelBase(nn.Module):
12
+ """
13
+ Do not instantiate this class.
14
+ """
15
+
16
+ def __init__(self, num_joints_in, in_features, num_joints_out,
17
+ filter_widths, causal, dropout, channels):
18
+ super().__init__()
19
+
20
+ # Validate input
21
+ for fw in filter_widths:
22
+ assert fw % 2 != 0, 'Only odd filter widths are supported'
23
+
24
+ self.num_joints_in = num_joints_in
25
+ self.in_features = in_features
26
+ self.num_joints_out = num_joints_out
27
+ self.filter_widths = filter_widths
28
+
29
+ self.drop = nn.Dropout(dropout)
30
+ self.relu = nn.ReLU(inplace=True)
31
+
32
+ self.pad = [filter_widths[0] // 2]
33
+ self.expand_bn = nn.BatchNorm1d(channels, momentum=0.1)
34
+ self.shrink = nn.Conv1d(channels, num_joints_out * 3, 1)
35
+
36
+ def set_bn_momentum(self, momentum):
37
+ self.expand_bn.momentum = momentum
38
+ for bn in self.layers_bn:
39
+ bn.momentum = momentum
40
+
41
+ def receptive_field(self):
42
+ """
43
+ Return the total receptive field of this model as # of frames.
44
+ """
45
+ frames = 0
46
+ for f in self.pad:
47
+ frames += f
48
+ return 1 + 2 * frames
49
+
50
+ def total_causal_shift(self):
51
+ """
52
+ Return the asymmetric offset for sequence padding.
53
+ The returned value is typically 0 if causal convolutions are disabled,
54
+ otherwise it is half the receptive field.
55
+ """
56
+ frames = self.causal_shift[0]
57
+ next_dilation = self.filter_widths[0]
58
+ for i in range(1, len(self.filter_widths)):
59
+ frames += self.causal_shift[i] * next_dilation
60
+ next_dilation *= self.filter_widths[i]
61
+ return frames
62
+
63
+ def forward(self, x):
64
+ assert len(x.shape) == 4
65
+ assert x.shape[-2] == self.num_joints_in
66
+ assert x.shape[-1] == self.in_features
67
+
68
+ sz = x.shape[:3]
69
+ x = x.view(x.shape[0], x.shape[1], -1)
70
+ x = x.permute(0, 2, 1)
71
+
72
+ x = self._forward_blocks(x)
73
+
74
+ x = x.permute(0, 2, 1)
75
+ x = x.view(sz[0], -1, self.num_joints_out, 3)
76
+
77
+ return x
78
+
79
+
80
+ class TemporalModel(TemporalModelBase):
81
+ """
82
+ Reference 3D pose estimation model with temporal convolutions.
83
+ This implementation can be used for all use-cases.
84
+ """
85
+
86
+ def __init__(self, num_joints_in, in_features, num_joints_out,
87
+ filter_widths, causal=False, dropout=0.25, channels=1024, dense=False):
88
+ """
89
+ Initialize this model.
90
+
91
+ Arguments:
92
+ num_joints_in -- number of input joints (e.g. 17 for Human3.6M)
93
+ in_features -- number of input features for each joint (typically 2 for 2D input)
94
+ num_joints_out -- number of output joints (can be different than input)
95
+ filter_widths -- list of convolution widths, which also determines the # of blocks and receptive field
96
+ causal -- use causal convolutions instead of symmetric convolutions (for real-time applications)
97
+ dropout -- dropout probability
98
+ channels -- number of convolution channels
99
+ dense -- use regular dense convolutions instead of dilated convolutions (ablation experiment)
100
+ """
101
+ super().__init__(num_joints_in, in_features, num_joints_out, filter_widths, causal, dropout, channels)
102
+
103
+ self.expand_conv = nn.Conv1d(num_joints_in * in_features, channels, filter_widths[0], bias=False)
104
+
105
+ layers_conv = []
106
+ layers_bn = []
107
+
108
+ self.causal_shift = [(filter_widths[0]) // 2 if causal else 0]
109
+ next_dilation = filter_widths[0]
110
+ for i in range(1, len(filter_widths)):
111
+ self.pad.append((filter_widths[i] - 1) * next_dilation // 2)
112
+ self.causal_shift.append((filter_widths[i] // 2 * next_dilation) if causal else 0)
113
+
114
+ layers_conv.append(nn.Conv1d(channels, channels,
115
+ filter_widths[i] if not dense else (2 * self.pad[-1] + 1),
116
+ dilation=next_dilation if not dense else 1,
117
+ bias=False))
118
+ layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
119
+ layers_conv.append(nn.Conv1d(channels, channels, 1, dilation=1, bias=False))
120
+ layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
121
+
122
+ next_dilation *= filter_widths[i]
123
+
124
+ self.layers_conv = nn.ModuleList(layers_conv)
125
+ self.layers_bn = nn.ModuleList(layers_bn)
126
+
127
+ def _forward_blocks(self, x):
128
+ x = self.drop(self.relu(self.expand_bn(self.expand_conv(x))))
129
+
130
+ for i in range(len(self.pad) - 1):
131
+ pad = self.pad[i + 1]
132
+ shift = self.causal_shift[i + 1]
133
+ # clip
134
+ res = x[:, :, pad + shift: x.shape[2] - pad + shift]
135
+
136
+ x = self.drop(self.relu(self.layers_bn[2 * i](self.layers_conv[2 * i](x))))
137
+ x = res + self.drop(self.relu(self.layers_bn[2 * i + 1](self.layers_conv[2 * i + 1](x))))
138
+
139
+ x = self.shrink(x)
140
+ return x
141
+
142
+
143
+ class TemporalModelOptimized1f(TemporalModelBase):
144
+ """
145
+ 3D pose estimation model optimized for single-frame batching, i.e.
146
+ where batches have input length = receptive field, and output length = 1.
147
+ This scenario is only used for training when stride == 1.
148
+
149
+ This implementation replaces dilated convolutions with strided convolutions
150
+ to avoid generating unused intermediate results. The weights are interchangeable
151
+ with the reference implementation.
152
+ """
153
+
154
+ def __init__(self, num_joints_in, in_features, num_joints_out,
155
+ filter_widths, causal=False, dropout=0.25, channels=1024):
156
+ """
157
+ Initialize this model.
158
+
159
+ Arguments:
160
+ num_joints_in -- number of input joints (e.g. 17 for Human3.6M)
161
+ in_features -- number of input features for each joint (typically 2 for 2D input)
162
+ num_joints_out -- number of output joints (can be different than input)
163
+ filter_widths -- list of convolution widths, which also determines the # of blocks and receptive field
164
+ causal -- use causal convolutions instead of symmetric convolutions (for real-time applications)
165
+ dropout -- dropout probability
166
+ channels -- number of convolution channels
167
+ """
168
+ super().__init__(num_joints_in, in_features, num_joints_out, filter_widths, causal, dropout, channels)
169
+
170
+ self.expand_conv = nn.Conv1d(num_joints_in * in_features, channels, filter_widths[0], stride=filter_widths[0], bias=False)
171
+
172
+ layers_conv = []
173
+ layers_bn = []
174
+
175
+ self.causal_shift = [(filter_widths[0] // 2) if causal else 0]
176
+ next_dilation = filter_widths[0]
177
+ for i in range(1, len(filter_widths)):
178
+ self.pad.append((filter_widths[i] - 1) * next_dilation // 2)
179
+ self.causal_shift.append((filter_widths[i] // 2) if causal else 0)
180
+
181
+ layers_conv.append(nn.Conv1d(channels, channels, filter_widths[i], stride=filter_widths[i], bias=False))
182
+ layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
183
+ layers_conv.append(nn.Conv1d(channels, channels, 1, dilation=1, bias=False))
184
+ layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
185
+ next_dilation *= filter_widths[i]
186
+
187
+ self.layers_conv = nn.ModuleList(layers_conv)
188
+ self.layers_bn = nn.ModuleList(layers_bn)
189
+
190
+ def _forward_blocks(self, x):
191
+ x = self.drop(self.relu(self.expand_bn(self.expand_conv(x))))
192
+
193
+ for i in range(len(self.pad) - 1):
194
+ res = x[:, :, self.causal_shift[i + 1] + self.filter_widths[i + 1] // 2:: self.filter_widths[i + 1]]
195
+
196
+ x = self.drop(self.relu(self.layers_bn[2 * i](self.layers_conv[2 * i](x))))
197
+ x = res + self.drop(self.relu(self.layers_bn[2 * i + 1](self.layers_conv[2 * i + 1](x))))
198
+
199
+ x = self.shrink(x)
200
+ return x
common/quaternion.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ import torch
9
+
10
+
11
+ def qrot(q, v):
12
+ """
13
+ Rotate vector(s) v about the rotation described by 四元数quaternion(s) q.
14
+ Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v,
15
+ where * denotes any number of dimensions.
16
+ Returns a tensor of shape (*, 3).
17
+ """
18
+ assert q.shape[-1] == 4
19
+ assert v.shape[-1] == 3
20
+ assert q.shape[:-1] == v.shape[:-1]
21
+
22
+ qvec = q[..., 1:]
23
+ uv = torch.cross(qvec, v, dim=len(q.shape) - 1)
24
+ uuv = torch.cross(qvec, uv, dim=len(q.shape) - 1)
25
+ return (v + 2 * (q[..., :1] * uv + uuv))
26
+
27
+
28
+ def qinverse(q, inplace=False):
29
+ # We assume the quaternion to be normalized
30
+ if inplace:
31
+ q[..., 1:] *= -1
32
+ return q
33
+ else:
34
+ w = q[..., :1]
35
+ xyz = q[..., 1:]
36
+ return torch.cat((w, -xyz), dim=len(q.shape) - 1)
common/skeleton.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ import numpy as np
9
+
10
+
11
+ class Skeleton:
12
+ def __init__(self, parents, joints_left, joints_right):
13
+ assert len(joints_left) == len(joints_right)
14
+
15
+ self._parents = np.array(parents)
16
+ self._joints_left = joints_left
17
+ self._joints_right = joints_right
18
+ self._compute_metadata()
19
+
20
+ def num_joints(self):
21
+ return len(self._parents)
22
+
23
+ def parents(self):
24
+ return self._parents
25
+
26
+ def has_children(self):
27
+ return self._has_children
28
+
29
+ def children(self):
30
+ return self._children
31
+
32
+ def remove_joints(self, joints_to_remove):
33
+ """
34
+ Remove the joints specified in 'joints_to_remove'.
35
+ """
36
+ valid_joints = []
37
+ for joint in range(len(self._parents)):
38
+ if joint not in joints_to_remove:
39
+ valid_joints.append(joint)
40
+
41
+ for i in range(len(self._parents)):
42
+ while self._parents[i] in joints_to_remove:
43
+ self._parents[i] = self._parents[self._parents[i]]
44
+
45
+ index_offsets = np.zeros(len(self._parents), dtype=int)
46
+ new_parents = []
47
+ for i, parent in enumerate(self._parents):
48
+ if i not in joints_to_remove:
49
+ new_parents.append(parent - index_offsets[parent])
50
+ else:
51
+ index_offsets[i:] += 1
52
+ self._parents = np.array(new_parents)
53
+
54
+ if self._joints_left is not None:
55
+ new_joints_left = []
56
+ for joint in self._joints_left:
57
+ if joint in valid_joints:
58
+ new_joints_left.append(joint - index_offsets[joint])
59
+ self._joints_left = new_joints_left
60
+ if self._joints_right is not None:
61
+ new_joints_right = []
62
+ for joint in self._joints_right:
63
+ if joint in valid_joints:
64
+ new_joints_right.append(joint - index_offsets[joint])
65
+ self._joints_right = new_joints_right
66
+
67
+ self._compute_metadata()
68
+
69
+ return valid_joints
70
+
71
+ def joints_left(self):
72
+ return self._joints_left
73
+
74
+ def joints_right(self):
75
+ return self._joints_right
76
+
77
+ def _compute_metadata(self):
78
+ self._has_children = np.zeros(len(self._parents)).astype(bool)
79
+ for i, parent in enumerate(self._parents):
80
+ if parent != -1:
81
+ self._has_children[parent] = True
82
+
83
+ self._children = []
84
+ for i, parent in enumerate(self._parents):
85
+ self._children.append([])
86
+ for i, parent in enumerate(self._parents):
87
+ if parent != -1:
88
+ self._children[parent].append(i)
common/utils.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+ import hashlib
8
+ import os
9
+ import pathlib
10
+ import shutil
11
+ import sys
12
+ import time
13
+
14
+ import cv2
15
+ import numpy as np
16
+ import torch
17
+
18
+
19
+ def add_path():
20
+ Alphapose_path = os.path.abspath('joints_detectors/Alphapose')
21
+ hrnet_path = os.path.abspath('joints_detectors/hrnet')
22
+ trackers_path = os.path.abspath('pose_trackers')
23
+ paths = filter(lambda p: p not in sys.path, [Alphapose_path, hrnet_path, trackers_path])
24
+
25
+ sys.path.extend(paths)
26
+
27
+
28
+ def wrap(func, *args, unsqueeze=False):
29
+ """
30
+ Wrap a torch function so it can be called with NumPy arrays.
31
+ Input and return types are seamlessly converted.
32
+ """
33
+
34
+ # Convert input types where applicable
35
+ args = list(args)
36
+ for i, arg in enumerate(args):
37
+ if type(arg) == np.ndarray:
38
+ args[i] = torch.from_numpy(arg)
39
+ if unsqueeze:
40
+ args[i] = args[i].unsqueeze(0)
41
+
42
+ result = func(*args)
43
+
44
+ # Convert output types where applicable
45
+ if isinstance(result, tuple):
46
+ result = list(result)
47
+ for i, res in enumerate(result):
48
+ if type(res) == torch.Tensor:
49
+ if unsqueeze:
50
+ res = res.squeeze(0)
51
+ result[i] = res.numpy()
52
+ return tuple(result)
53
+ elif type(result) == torch.Tensor:
54
+ if unsqueeze:
55
+ result = result.squeeze(0)
56
+ return result.numpy()
57
+ else:
58
+ return result
59
+
60
+
61
+ def deterministic_random(min_value, max_value, data):
62
+ digest = hashlib.sha256(data.encode()).digest()
63
+ raw_value = int.from_bytes(digest[:4], byteorder='little', signed=False)
64
+ return int(raw_value / (2 ** 32 - 1) * (max_value - min_value)) + min_value
65
+
66
+
67
+ def alpha_map(prediction):
68
+ p_min, p_max = prediction.min(), prediction.max()
69
+
70
+ k = 1.6 / (p_max - p_min)
71
+ b = 0.8 - k * p_max
72
+
73
+ prediction = k * prediction + b
74
+
75
+ return prediction
76
+
77
+
78
+ def change_score(prediction, detectron_detection_path):
79
+ detectron_predictions = np.load(detectron_detection_path, allow_pickle=True)['positions_2d'].item()
80
+ pose = detectron_predictions['S1']['Directions 1']
81
+ prediction[..., 2] = pose[..., 2]
82
+
83
+ return prediction
84
+
85
+
86
+ class Timer:
87
+ def __init__(self, message, show=True):
88
+ self.message = message
89
+ self.elapsed = 0
90
+ self.show = show
91
+
92
+ def __enter__(self):
93
+ self.start = time.perf_counter()
94
+
95
+ def __exit__(self, exc_type, exc_val, exc_tb):
96
+ if self.show:
97
+ print(f'{self.message} --- elapsed time: {time.perf_counter() - self.start} s')
98
+
99
+
100
+ def calculate_area(data):
101
+ """
102
+ Get the rectangle area of keypoints.
103
+ :param data: AlphaPose json keypoint format([x, y, score, ... , x, y, score]) or AlphaPose result keypoint format([[x, y], ..., [x, y]])
104
+ :return: area
105
+ """
106
+ data = np.array(data)
107
+
108
+ if len(data.shape) == 1:
109
+ data = np.reshape(data, (-1, 3))
110
+
111
+ width = min(data[:, 0]) - max(data[:, 0])
112
+ height = min(data[:, 1]) - max(data[:, 1])
113
+
114
+ return np.abs(width * height)
115
+
116
+
117
+ def read_video(filename, fps=None, skip=0, limit=-1):
118
+ stream = cv2.VideoCapture(filename)
119
+
120
+ i = 0
121
+ while True:
122
+ grabbed, frame = stream.read()
123
+ # if the `grabbed` boolean is `False`, then we have
124
+ # reached the end of the video file
125
+ if not grabbed:
126
+ print('===========================> This video get ' + str(i) + ' frames in total.')
127
+ sys.stdout.flush()
128
+ break
129
+
130
+ i += 1
131
+ if i > skip:
132
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
133
+ yield np.array(frame)
134
+ if i == limit:
135
+ break
136
+
137
+
138
+ def split_video(video_path):
139
+ stream = cv2.VideoCapture(video_path)
140
+
141
+ output_dir = os.path.dirname(video_path)
142
+ video_name = os.path.basename(video_path)
143
+ video_name = video_name[:video_name.rfind('.')]
144
+
145
+ save_folder = pathlib.Path(f'./{output_dir}/alpha_pose_{video_name}/split_image/')
146
+ shutil.rmtree(str(save_folder), ignore_errors=True)
147
+ save_folder.mkdir(parents=True, exist_ok=True)
148
+
149
+ total_frames = int(stream.get(cv2.CAP_PROP_FRAME_COUNT))
150
+ length = len(str(total_frames)) + 1
151
+
152
+ i = 1
153
+ while True:
154
+ grabbed, frame = stream.read()
155
+
156
+ if not grabbed:
157
+ print(f'Split totally {i + 1} images from video.')
158
+ break
159
+
160
+ save_path = f'{save_folder}/output{str(i).zfill(length)}.png'
161
+ cv2.imwrite(save_path, frame)
162
+
163
+ i += 1
164
+
165
+ saved_path = os.path.dirname(save_path)
166
+ print(f'Split images saved in {saved_path}')
167
+
168
+ return saved_path
169
+
170
+
171
+ def evaluate(test_generator, model_pos, action=None, return_predictions=False):
172
+ """
173
+ Inference the 3d positions from 2d position.
174
+ :type test_generator: UnchunkedGenerator
175
+ :param test_generator:
176
+ :param model_pos: 3d pose model
177
+ :param return_predictions: return predictions if true
178
+ :return:
179
+ """
180
+ joints_left, joints_right = list([4, 5, 6, 11, 12, 13]), list([1, 2, 3, 14, 15, 16])
181
+ with torch.no_grad():
182
+ model_pos.eval()
183
+ N = 0
184
+ for _, batch, batch_2d in test_generator.next_epoch():
185
+ inputs_2d = torch.from_numpy(batch_2d.astype('float32'))
186
+ if torch.cuda.is_available():
187
+ inputs_2d = inputs_2d.cuda()
188
+ # Positional model
189
+ predicted_3d_pos = model_pos(inputs_2d)
190
+ if test_generator.augment_enabled():
191
+ # Undo flipping and take average with non-flipped version
192
+ predicted_3d_pos[1, :, :, 0] *= -1
193
+ predicted_3d_pos[1, :, joints_left + joints_right] = predicted_3d_pos[1, :, joints_right + joints_left]
194
+ predicted_3d_pos = torch.mean(predicted_3d_pos, dim=0, keepdim=True)
195
+ if return_predictions:
196
+ return predicted_3d_pos.squeeze(0).cpu().numpy()
197
+
198
+
199
+ if __name__ == '__main__':
200
+ os.chdir('..')
201
+
202
+ split_video('outputs/kobe.mp4')
common/visualization.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ import time
9
+
10
+ import cv2
11
+ import matplotlib.pyplot as plt
12
+ import numpy as np
13
+ from matplotlib.animation import FuncAnimation, writers
14
+ from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
15
+ from mpl_toolkits.mplot3d import Axes3D
16
+ from tqdm import tqdm
17
+
18
+ from common.utils import read_video
19
+
20
+
21
+ def ckpt_time(ckpt=None, display=0, desc=''):
22
+ if not ckpt:
23
+ return time.time()
24
+ else:
25
+ if display:
26
+ print(desc + ' consume time {:0.4f}'.format(time.time() - float(ckpt)))
27
+ return time.time() - float(ckpt), time.time()
28
+
29
+
30
+ def set_equal_aspect(ax, data):
31
+ """
32
+ Create white cubic bounding box to make sure that 3d axis is in equal aspect.
33
+ :param ax: 3D axis
34
+ :param data: shape of(frames, 3), generated from BVH using convert_bvh2dataset.py
35
+ """
36
+ X, Y, Z = data[..., 0], data[..., 1], data[..., 2]
37
+
38
+ # Create cubic bounding box to simulate equal aspect ratio
39
+ max_range = np.array([X.max() - X.min(), Y.max() - Y.min(), Z.max() - Z.min()]).max()
40
+ Xb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][0].flatten() + 0.5 * (X.max() + X.min())
41
+ Yb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][1].flatten() + 0.5 * (Y.max() + Y.min())
42
+ Zb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][2].flatten() + 0.5 * (Z.max() + Z.min())
43
+
44
+ for xb, yb, zb in zip(Xb, Yb, Zb):
45
+ ax.plot([xb], [yb], [zb], 'w')
46
+
47
+
48
+ def downsample_tensor(X, factor):
49
+ length = X.shape[0] // factor * factor
50
+ return np.mean(X[:length].reshape(-1, factor, *X.shape[1:]), axis=1)
51
+
52
+
53
+ def render_animation(keypoints, poses, skeleton, fps, bitrate, azim, output, viewport,
54
+ limit=-1, downsample=1, size=6, input_video_path=None, input_video_skip=0):
55
+ """
56
+ TODO
57
+ Render an animation. The supported output modes are:
58
+ -- 'interactive': display an interactive figure
59
+ (also works on notebooks if associated with %matplotlib inline)
60
+ -- 'html': render the animation as HTML5 video. Can be displayed in a notebook using HTML(...).
61
+ -- 'filename.mp4': render and export the animation as an h264 video (requires ffmpeg).
62
+ -- 'filename.gif': render and export the animation a gif file (requires imagemagick).
63
+ """
64
+ plt.ioff()
65
+ fig = plt.figure(figsize=(size * (1 + len(poses)), size))
66
+ ax_in = fig.add_subplot(1, 1 + len(poses), 1)
67
+ ax_in.get_xaxis().set_visible(False)
68
+ ax_in.get_yaxis().set_visible(False)
69
+ ax_in.set_axis_off()
70
+ ax_in.set_title('Input')
71
+
72
+ # prevent wired error
73
+ _ = Axes3D.__class__.__name__
74
+
75
+ ax_3d = []
76
+ lines_3d = []
77
+ trajectories = []
78
+ radius = 1.7
79
+ for index, (title, data) in enumerate(poses.items()):
80
+ ax = fig.add_subplot(1, 1 + len(poses), index + 2, projection='3d')
81
+ ax.view_init(elev=15., azim=azim)
82
+ ax.set_xlim3d([-radius / 2, radius / 2])
83
+ ax.set_zlim3d([0, radius])
84
+ ax.set_ylim3d([-radius / 2, radius / 2])
85
+ # ax.set_aspect('equal')
86
+ ax.set_xticklabels([])
87
+ ax.set_yticklabels([])
88
+ ax.set_zticklabels([])
89
+ ax.dist = 12.5
90
+ ax.set_title(title) # , pad=35
91
+ ax_3d.append(ax)
92
+ lines_3d.append([])
93
+ trajectories.append(data[:, 0, [0, 1]])
94
+ poses = list(poses.values())
95
+
96
+ # Decode video
97
+ if input_video_path is None:
98
+ # Black background
99
+ all_frames = np.zeros((keypoints.shape[0], viewport[1], viewport[0]), dtype='uint8')
100
+ else:
101
+ # Load video using ffmpeg
102
+ all_frames = []
103
+ for f in read_video(input_video_path, fps=None, skip=input_video_skip):
104
+ all_frames.append(f)
105
+
106
+ effective_length = min(keypoints.shape[0], len(all_frames))
107
+ all_frames = all_frames[:effective_length]
108
+
109
+ if downsample > 1:
110
+ keypoints = downsample_tensor(keypoints, downsample)
111
+ all_frames = downsample_tensor(np.array(all_frames), downsample).astype('uint8')
112
+ for idx in range(len(poses)):
113
+ poses[idx] = downsample_tensor(poses[idx], downsample)
114
+ trajectories[idx] = downsample_tensor(trajectories[idx], downsample)
115
+ fps /= downsample
116
+
117
+ initialized = False
118
+ image = None
119
+ lines = []
120
+ points = None
121
+
122
+ if limit < 1:
123
+ limit = len(all_frames)
124
+ else:
125
+ limit = min(limit, len(all_frames))
126
+
127
+ parents = skeleton.parents()
128
+ pbar = tqdm(total=limit)
129
+
130
+ def update_video(i):
131
+ nonlocal initialized, image, lines, points
132
+
133
+ for n, ax in enumerate(ax_3d):
134
+ ax.set_xlim3d([-radius / 2 + trajectories[n][i, 0], radius / 2 + trajectories[n][i, 0]])
135
+ ax.set_ylim3d([-radius / 2 + trajectories[n][i, 1], radius / 2 + trajectories[n][i, 1]])
136
+
137
+ # Update 2D poses
138
+ if not initialized:
139
+ image = ax_in.imshow(all_frames[i], aspect='equal')
140
+
141
+ for j, j_parent in enumerate(parents):
142
+ if j_parent == -1:
143
+ continue
144
+
145
+ # if len(parents) == keypoints.shape[1] and 1 == 2:
146
+ # # Draw skeleton only if keypoints match (otherwise we don't have the parents definition)
147
+ # lines.append(ax_in.plot([keypoints[i, j, 0], keypoints[i, j_parent, 0]],
148
+ # [keypoints[i, j, 1], keypoints[i, j_parent, 1]], color='pink'))
149
+
150
+ col = 'red' if j in skeleton.joints_right() else 'black'
151
+ for n, ax in enumerate(ax_3d):
152
+ pos = poses[n][i]
153
+ lines_3d[n].append(ax.plot([pos[j, 0], pos[j_parent, 0]],
154
+ [pos[j, 1], pos[j_parent, 1]],
155
+ [pos[j, 2], pos[j_parent, 2]], zdir='z', c=col))
156
+
157
+ points = ax_in.scatter(*keypoints[i].T, 5, color='red', edgecolors='white', zorder=10)
158
+
159
+ initialized = True
160
+ else:
161
+ image.set_data(all_frames[i])
162
+
163
+ for j, j_parent in enumerate(parents):
164
+ if j_parent == -1:
165
+ continue
166
+
167
+ # if len(parents) == keypoints.shape[1] and 1 == 2:
168
+ # lines[j - 1][0].set_data([keypoints[i, j, 0], keypoints[i, j_parent, 0]],
169
+ # [keypoints[i, j, 1], keypoints[i, j_parent, 1]])
170
+
171
+ for n, ax in enumerate(ax_3d):
172
+ pos = poses[n][i]
173
+ lines_3d[n][j - 1][0].set_xdata(np.array([pos[j, 0], pos[j_parent, 0]])) # Hotfix matplotlib's bug. https://github.com/matplotlib/matplotlib/pull/20555
174
+ lines_3d[n][j - 1][0].set_ydata([pos[j, 1], pos[j_parent, 1]])
175
+ lines_3d[n][j - 1][0].set_3d_properties([pos[j, 2], pos[j_parent, 2]], zdir='z')
176
+
177
+ points.set_offsets(keypoints[i])
178
+
179
+ pbar.update()
180
+
181
+ fig.tight_layout()
182
+
183
+ anim = FuncAnimation(fig, update_video, frames=limit, interval=1000.0 / fps, repeat=False)
184
+ if output.endswith('.mp4'):
185
+ Writer = writers['ffmpeg']
186
+ writer = Writer(fps=fps, metadata={}, bitrate=bitrate)
187
+ anim.save(output, writer=writer)
188
+ elif output.endswith('.gif'):
189
+ anim.save(output, dpi=60, writer='imagemagick')
190
+ else:
191
+ raise ValueError('Unsupported output format (only .mp4 and .gif are supported)')
192
+ pbar.close()
193
+ plt.close()
194
+
195
+
196
+ def render_animation_test(keypoints, poses, skeleton, fps, bitrate, azim, output, viewport, limit=-1, downsample=1, size=6, input_video_frame=None,
197
+ input_video_skip=0, num=None):
198
+ t0 = ckpt_time()
199
+ fig = plt.figure(figsize=(12, 6))
200
+ canvas = FigureCanvas(fig)
201
+ fig.add_subplot(121)
202
+ plt.imshow(input_video_frame)
203
+ # 3D
204
+ ax = fig.add_subplot(122, projection='3d')
205
+ ax.view_init(elev=15., azim=azim)
206
+ # set 长度范围
207
+ radius = 1.7
208
+ ax.set_xlim3d([-radius / 2, radius / 2])
209
+ ax.set_zlim3d([0, radius])
210
+ ax.set_ylim3d([-radius / 2, radius / 2])
211
+ ax.set_aspect('equal')
212
+ # 坐标轴刻度
213
+ ax.set_xticklabels([])
214
+ ax.set_yticklabels([])
215
+ ax.set_zticklabels([])
216
+ ax.dist = 7.5
217
+
218
+ # lxy add
219
+ ax.set_xlabel('X Label')
220
+ ax.set_ylabel('Y Label')
221
+ ax.set_zlabel('Z Label')
222
+
223
+ # array([-1, 0, 1, 2, 0, 4, 5, 0, 7, 8, 9, 8, 11, 12, 8, 14, 15])
224
+ parents = skeleton.parents()
225
+
226
+ pos = poses['Reconstruction'][-1]
227
+ _, t1 = ckpt_time(t0, desc='1 ')
228
+ for j, j_parent in enumerate(parents):
229
+ if j_parent == -1:
230
+ continue
231
+
232
+ if len(parents) == keypoints.shape[1]:
233
+ color_pink = 'pink'
234
+ if j == 1 or j == 2:
235
+ color_pink = 'black'
236
+
237
+ col = 'red' if j in skeleton.joints_right() else 'black'
238
+ # 画图3D
239
+ ax.plot([pos[j, 0], pos[j_parent, 0]],
240
+ [pos[j, 1], pos[j_parent, 1]],
241
+ [pos[j, 2], pos[j_parent, 2]], zdir='z', c=col)
242
+
243
+ # plt.savefig('test/3Dimage_{}.png'.format(1000+num))
244
+ width, height = fig.get_size_inches() * fig.get_dpi()
245
+ _, t2 = ckpt_time(t1, desc='2 ')
246
+ canvas.draw() # draw the canvas, cache the renderer
247
+ image = np.fromstring(canvas.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
248
+ cv2.imshow('im', image)
249
+ cv2.waitKey(5)
250
+ _, t3 = ckpt_time(t2, desc='3 ')
251
+ return image
data/data_utils.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ import h5py
9
+ import numpy as np
10
+
11
+ mpii_metadata = {
12
+ 'layout_name': 'mpii',
13
+ 'num_joints': 16,
14
+ 'keypoints_symmetry': [
15
+ [3, 4, 5, 13, 14, 15],
16
+ [0, 1, 2, 10, 11, 12],
17
+ ]
18
+ }
19
+
20
+ coco_metadata = {
21
+ 'layout_name': 'coco',
22
+ 'num_joints': 17,
23
+ 'keypoints_symmetry': [
24
+ [1, 3, 5, 7, 9, 11, 13, 15],
25
+ [2, 4, 6, 8, 10, 12, 14, 16],
26
+ ]
27
+ }
28
+
29
+ h36m_metadata = {
30
+ 'layout_name': 'h36m',
31
+ 'num_joints': 17,
32
+ 'keypoints_symmetry': [
33
+ [4, 5, 6, 11, 12, 13],
34
+ [1, 2, 3, 14, 15, 16],
35
+ ]
36
+ }
37
+
38
+ humaneva15_metadata = {
39
+ 'layout_name': 'humaneva15',
40
+ 'num_joints': 15,
41
+ 'keypoints_symmetry': [
42
+ [2, 3, 4, 8, 9, 10],
43
+ [5, 6, 7, 11, 12, 13]
44
+ ]
45
+ }
46
+
47
+ humaneva20_metadata = {
48
+ 'layout_name': 'humaneva20',
49
+ 'num_joints': 20,
50
+ 'keypoints_symmetry': [
51
+ [3, 4, 5, 6, 11, 12, 13, 14],
52
+ [7, 8, 9, 10, 15, 16, 17, 18]
53
+ ]
54
+ }
55
+
56
+
57
+ def suggest_metadata(name):
58
+ names = []
59
+ for metadata in [mpii_metadata, coco_metadata, h36m_metadata, humaneva15_metadata, humaneva20_metadata]:
60
+ if metadata['layout_name'] in name:
61
+ return metadata
62
+ names.append(metadata['layout_name'])
63
+ raise KeyError('Cannot infer keypoint layout from name "{}". Tried {}.'.format(name, names))
64
+
65
+
66
+ def import_detectron_poses(path):
67
+ # Latin1 encoding because Detectron runs on Python 2.7
68
+ data = np.load(path, encoding='latin1')
69
+ kp = data['keypoints']
70
+ bb = data['boxes']
71
+ results = []
72
+ for i in range(len(bb)):
73
+ if len(bb[i][1]) == 0:
74
+ assert i > 0
75
+ # Use last pose in case of detection failure
76
+ results.append(results[-1])
77
+ continue
78
+ best_match = np.argmax(bb[i][1][:, 4])
79
+ # import ipdb;ipdb.set_trace()
80
+ keypoints = kp[i][1][best_match].T.copy()
81
+ results.append(keypoints)
82
+ results = np.array(results)
83
+ # return results[:, :, 4:6] # Soft-argmax
84
+ return results[:, :, [0, 1, 3]] # Argmax + score
85
+
86
+
87
+ def my_pose(path):
88
+ data = np.load(path, encoding='latin1')
89
+
90
+
91
+ def import_cpn_poses(path):
92
+ data = np.load(path)
93
+ kp = data['keypoints']
94
+ return kp[:, :, :2]
95
+
96
+
97
+ def import_sh_poses(path):
98
+ with h5py.File(path) as hf:
99
+ positions = hf['poses'].value
100
+ return positions.astype('float32')
101
+
102
+
103
+ def suggest_pose_importer(name):
104
+ if 'detectron' in name:
105
+ return import_detectron_poses
106
+ if 'cpn' in name:
107
+ return import_cpn_poses
108
+ if 'sh' in name:
109
+ return import_sh_poses
110
+ raise KeyError('Cannot infer keypoint format from name "{}". Tried detectron, cpn, sh.'.format(name))
data/prepare_2d_kpt.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import sys
4
+
5
+ import numpy as np
6
+ from data_utils import suggest_metadata, suggest_pose_importer
7
+
8
+ sys.path.append('../')
9
+
10
+ output_prefix_2d = 'data_2d_h36m_'
11
+ cam_map = {
12
+ '54138969': 0,
13
+ '55011271': 1,
14
+ '58860488': 2,
15
+ '60457274': 3,
16
+ }
17
+
18
+ if __name__ == '__main__':
19
+ if os.path.basename(os.getcwd()) != 'data':
20
+ print('This script must be launched from the "data" directory')
21
+ exit(0)
22
+
23
+ parser = argparse.ArgumentParser(description='Human3.6M dataset converter')
24
+
25
+ parser.add_argument('-i', '--input', default='', type=str, metavar='PATH', help='input path to 2D detections')
26
+ parser.add_argument('-o', '--output', default='detectron_pt_coco', type=str, metavar='PATH',
27
+ help='output suffix for 2D detections (e.g. detectron_pt_coco)')
28
+
29
+ args = parser.parse_args()
30
+
31
+ if not args.input:
32
+ print('Please specify the input directory')
33
+ exit(0)
34
+
35
+ # according to output name,generate some format. we use detectron
36
+ import_func = suggest_pose_importer('detectron_pt_coco')
37
+ metadata = suggest_metadata('detectron_pt_coco')
38
+
39
+ print('Parsing 2D detections from', args.input)
40
+ keypoints = import_func(args.input)
41
+
42
+ output = keypoints.astype(np.float32)
43
+ # 生成的数据用于后面的3D检测
44
+ np.savez_compressed(output_prefix_2d + 'test' + args.output, positions_2d=output, metadata=metadata)
45
+ print('npz name is ', output_prefix_2d + 'test' + args.output)
data/prepare_data_2d_h36m_generic.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ import argparse
9
+ import os
10
+ import re
11
+ import sys
12
+ from glob import glob
13
+
14
+ import ipdb
15
+ import numpy as np
16
+ from data_utils import suggest_metadata, suggest_pose_importer
17
+
18
+ sys.path.append('../')
19
+
20
+ output_prefix_2d = 'data_2d_h36m_'
21
+ cam_map = {
22
+ '54138969': 0,
23
+ '55011271': 1,
24
+ '58860488': 2,
25
+ '60457274': 3,
26
+ }
27
+
28
+ if __name__ == '__main__':
29
+ if os.path.basename(os.getcwd()) != 'data':
30
+ print('This script must be launched from the "data" directory')
31
+ exit(0)
32
+
33
+ parser = argparse.ArgumentParser(description='Human3.6M dataset converter')
34
+
35
+ parser.add_argument('-i', '--input', default='', type=str, metavar='PATH', help='input path to 2D detections')
36
+ parser.add_argument('-o', '--output', default='', type=str, metavar='PATH', help='output suffix for 2D detections (e.g. detectron_pt_coco)')
37
+
38
+ args = parser.parse_args()
39
+
40
+ if not args.input:
41
+ print('Please specify the input directory')
42
+ exit(0)
43
+
44
+ if not args.output:
45
+ print('Please specify an output suffix (e.g. detectron_pt_coco)')
46
+ exit(0)
47
+
48
+ import_func = suggest_pose_importer(args.output)
49
+ metadata = suggest_metadata(args.output)
50
+
51
+ print('Parsing 2D detections from', args.input)
52
+
53
+ output = {}
54
+
55
+ # lxy add
56
+ keypoints = import_func(args.input)
57
+ output['S1'] = {}
58
+ output['S1']['Walking'] = [None, None, None, None]
59
+ output['S1']['Walking'][0] = keypoints.astype(np.float32)
60
+ np.savez_compressed(output_prefix_2d + '00' + args.output, positions_2d=output, metadata=metadata)
61
+ data = np.load('data_2d_h36m_detectron_pt_coco.npz')
62
+ data1 = np.load('data_2d_h36m_00detectron_pt_coco.npz')
63
+ actions = data['positions_2d'].item()
64
+ actions1 = data1['positions_2d'].item()
65
+ meta = data['metadata']
66
+
67
+ actions['S1']['Walking'][0] = actions1['S1']['Walking'][0][:, :, :]
68
+ np.savez_compressed('data_2d_h36m_lxy_cpn_ft_h36m_dbb.npz', positions_2d=actions, metadata=meta)
69
+
70
+ os.exit()
71
+ ipdb.set_trace()
72
+
73
+ # match all file with the format
74
+ file_list = glob(args.input + '/S*/*.mp4.npz')
75
+ for f in file_list:
76
+ path, fname = os.path.split(f)
77
+ subject = os.path.basename(path)
78
+ assert subject.startswith('S'), subject + ' does not look like a subject directory'
79
+
80
+ if '_ALL' in fname:
81
+ continue
82
+
83
+ m = re.search('(.*)\\.([0-9]+)\\.mp4\\.npz', fname)
84
+ # first parentheses
85
+ action = m.group(1)
86
+ # second parentheses
87
+ camera = m.group(2)
88
+ camera_idx = cam_map[camera]
89
+
90
+ if subject == 'S11' and action == 'Directions':
91
+ continue # Discard corrupted video
92
+
93
+ # Use consistent naming convention
94
+ canonical_name = action.replace('TakingPhoto', 'Photo') \
95
+ .replace('WalkingDog', 'WalkDog')
96
+
97
+ keypoints = import_func(f)
98
+ assert keypoints.shape[1] == metadata['num_joints']
99
+
100
+ if subject not in output:
101
+ output[subject] = {}
102
+ if canonical_name not in output[subject]:
103
+ output[subject][canonical_name] = [None, None, None, None]
104
+ output[subject][canonical_name][camera_idx] = keypoints.astype('float32')
105
+
106
+ print('Saving...')
107
+ np.savez_compressed(output_prefix_2d + args.output, positions_2d=output, metadata=metadata)
108
+ print('Done.')
data/prepare_data_2d_h36m_sh.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ import argparse
9
+ import os
10
+ import sys
11
+ import tarfile
12
+ import zipfile
13
+ from glob import glob
14
+ from shutil import rmtree
15
+
16
+ import h5py
17
+ import numpy as np
18
+
19
+ sys.path.append('../')
20
+
21
+ output_filename_pt = 'data_2d_h36m_sh_pt_mpii'
22
+ output_filename_ft = 'data_2d_h36m_sh_ft_h36m'
23
+ subjects = ['S1', 'S5', 'S6', 'S7', 'S8', 'S9', 'S11']
24
+ cam_map = {
25
+ '54138969': 0,
26
+ '55011271': 1,
27
+ '58860488': 2,
28
+ '60457274': 3,
29
+ }
30
+
31
+ metadata = {
32
+ 'num_joints': 16,
33
+ 'keypoints_symmetry': [
34
+ [3, 4, 5, 13, 14, 15],
35
+ [0, 1, 2, 10, 11, 12],
36
+ ]
37
+ }
38
+
39
+
40
+ def process_subject(subject, file_list, output):
41
+ if subject == 'S11':
42
+ assert len(file_list) == 119, "Expected 119 files for subject " + subject + ", got " + str(len(file_list))
43
+ else:
44
+ assert len(file_list) == 120, "Expected 120 files for subject " + subject + ", got " + str(len(file_list))
45
+
46
+ for f in file_list:
47
+ action, cam = os.path.splitext(os.path.basename(f))[0].replace('_', ' ').split('.')
48
+
49
+ if subject == 'S11' and action == 'Directions':
50
+ continue # Discard corrupted video
51
+
52
+ if action not in output[subject]:
53
+ output[subject][action] = [None, None, None, None]
54
+
55
+ with h5py.File(f) as hf:
56
+ positions = hf['poses'].value
57
+ output[subject][action][cam_map[cam]] = positions.astype('float32')
58
+
59
+
60
+ if __name__ == '__main__':
61
+ if os.path.basename(os.getcwd()) != 'data':
62
+ print('This script must be launched from the "data" directory')
63
+ exit(0)
64
+
65
+ parser = argparse.ArgumentParser(description='Human3.6M dataset downloader/converter')
66
+
67
+ parser.add_argument('-pt', '--pretrained', default='', type=str, metavar='PATH', help='convert pretrained dataset')
68
+ parser.add_argument('-ft', '--fine-tuned', default='', type=str, metavar='PATH', help='convert fine-tuned dataset')
69
+
70
+ args = parser.parse_args()
71
+
72
+ if args.pretrained:
73
+ print('Converting pretrained dataset from', args.pretrained)
74
+ print('Extracting...')
75
+ with zipfile.ZipFile(args.pretrained, 'r') as archive:
76
+ archive.extractall('sh_pt')
77
+
78
+ print('Converting...')
79
+ output = {}
80
+ for subject in subjects:
81
+ output[subject] = {}
82
+ file_list = glob('sh_pt/h36m/' + subject + '/StackedHourglass/*.h5')
83
+ process_subject(subject, file_list, output)
84
+
85
+ print('Saving...')
86
+ np.savez_compressed(output_filename_pt, positions_2d=output, metadata=metadata)
87
+
88
+ print('Cleaning up...')
89
+ rmtree('sh_pt')
90
+
91
+ print('Done.')
92
+
93
+ if args.fine_tuned:
94
+ print('Converting fine-tuned dataset from', args.fine_tuned)
95
+ print('Extracting...')
96
+ with tarfile.open(args.fine_tuned, 'r:gz') as archive:
97
+ archive.extractall('sh_ft')
98
+
99
+ print('Converting...')
100
+ output = {}
101
+ for subject in subjects:
102
+ output[subject] = {}
103
+ file_list = glob('sh_ft/' + subject + '/StackedHourglassFineTuned240/*.h5')
104
+ process_subject(subject, file_list, output)
105
+
106
+ print('Saving...')
107
+ np.savez_compressed(output_filename_ft, positions_2d=output, metadata=metadata)
108
+
109
+ print('Cleaning up...')
110
+ rmtree('sh_ft')
111
+
112
+ print('Done.')
data/prepare_data_h36m.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ import argparse
9
+ import os
10
+ import sys
11
+ import zipfile
12
+ from glob import glob
13
+ from shutil import rmtree
14
+
15
+ import h5py
16
+ import numpy as np
17
+
18
+ sys.path.append('../')
19
+ from common.h36m_dataset import Human36mDataset
20
+ from common.camera import world_to_camera, project_to_2d, image_coordinates
21
+ from common.utils import wrap
22
+
23
+ output_filename = 'data_3d_h36m'
24
+ output_filename_2d = 'data_2d_h36m_gt'
25
+ subjects = ['S1', 'S5', 'S6', 'S7', 'S8', 'S9', 'S11']
26
+
27
+ if __name__ == '__main__':
28
+ if os.path.basename(os.getcwd()) != 'data':
29
+ print('This script must be launched from the "data" directory')
30
+ exit(0)
31
+
32
+ parser = argparse.ArgumentParser(description='Human3.6M dataset downloader/converter')
33
+
34
+ # Default: convert dataset preprocessed by Martinez et al. in https://github.com/una-dinosauria/3d-pose-baseline
35
+ parser.add_argument('--from-archive', default='', type=str, metavar='PATH', help='convert preprocessed dataset')
36
+
37
+ # Alternatively, convert dataset from original source (the Human3.6M dataset path must be specified manually)
38
+ parser.add_argument('--from-source', default='', type=str, metavar='PATH', help='convert original dataset')
39
+
40
+ args = parser.parse_args()
41
+
42
+ if args.from_archive and args.from_source:
43
+ print('Please specify only one argument')
44
+ exit(0)
45
+
46
+ if os.path.exists(output_filename + '.npz'):
47
+ print('The dataset already exists at', output_filename + '.npz')
48
+ exit(0)
49
+
50
+ if args.from_archive:
51
+ print('Extracting Human3.6M dataset from', args.from_archive)
52
+ with zipfile.ZipFile(args.from_archive, 'r') as archive:
53
+ archive.extractall()
54
+
55
+ print('Converting...')
56
+ output = {}
57
+ for subject in subjects:
58
+ output[subject] = {}
59
+ file_list = glob('h36m/' + subject + '/MyPoses/3D_positions/*.h5')
60
+ assert len(file_list) == 30, "Expected 30 files for subject " + subject + ", got " + str(len(file_list))
61
+ for f in file_list:
62
+ action = os.path.splitext(os.path.basename(f))[0]
63
+
64
+ if subject == 'S11' and action == 'Directions':
65
+ continue # Discard corrupted video
66
+
67
+ with h5py.File(f) as hf:
68
+ positions = hf['3D_positions'].value.reshape(32, 3, -1).transpose(2, 0, 1)
69
+ positions /= 1000 # Meters instead of millimeters
70
+ output[subject][action] = positions.astype('float32')
71
+
72
+ print('Saving...')
73
+ np.savez_compressed(output_filename, positions_3d=output)
74
+
75
+ print('Cleaning up...')
76
+ rmtree('h36m')
77
+
78
+ print('Done.')
79
+
80
+ elif args.from_source:
81
+ print('Converting original Human3.6M dataset from', args.from_source)
82
+ output = {}
83
+
84
+ from scipy.io import loadmat
85
+
86
+ import ipdb;
87
+
88
+ ipdb.set_trace()
89
+ for subject in subjects:
90
+ output[subject] = {}
91
+ file_list = glob(args.from_source + '/' + subject + '/MyPoseFeatures/D3_Positions/*.cdf.mat')
92
+ assert len(file_list) == 30, "Expected 30 files for subject " + subject + ", got " + str(len(file_list))
93
+ for f in file_list:
94
+ action = os.path.splitext(os.path.splitext(os.path.basename(f))[0])[0]
95
+
96
+ if subject == 'S11' and action == 'Directions':
97
+ continue # Discard corrupted video
98
+
99
+ # Use consistent naming convention
100
+ canonical_name = action.replace('TakingPhoto', 'Photo') \
101
+ .replace('WalkingDog', 'WalkDog')
102
+
103
+ hf = loadmat(f)
104
+ positions = hf['data'][0, 0].reshape(-1, 32, 3)
105
+ positions /= 1000 # Meters instead of millimeters
106
+ output[subject][canonical_name] = positions.astype('float32')
107
+
108
+ print('Saving...')
109
+ np.savez_compressed(output_filename, positions_3d=output)
110
+
111
+ print('Done.')
112
+
113
+ else:
114
+ print('Please specify the dataset source')
115
+ exit(0)
116
+
117
+ # Create 2D pose file
118
+ print('')
119
+ print('Computing ground-truth 2D poses...')
120
+ dataset = Human36mDataset(output_filename + '.npz')
121
+ output_2d_poses = {}
122
+ for subject in dataset.subjects():
123
+ output_2d_poses[subject] = {}
124
+ for action in dataset[subject].keys():
125
+ anim = dataset[subject][action]
126
+
127
+ positions_2d = []
128
+ for cam in anim['cameras']:
129
+ pos_3d = world_to_camera(anim['positions'], R=cam['orientation'], t=cam['translation'])
130
+ pos_2d = wrap(project_to_2d, pos_3d, cam['intrinsic'], unsqueeze=True)
131
+ pos_2d_pixel_space = image_coordinates(pos_2d, w=cam['res_w'], h=cam['res_h'])
132
+ positions_2d.append(pos_2d_pixel_space.astype('float32'))
133
+ output_2d_poses[subject][action] = positions_2d
134
+
135
+ print('Saving...')
136
+ metadata = {
137
+ 'num_joints': dataset.skeleton().num_joints(),
138
+ 'keypoints_symmetry': [dataset.skeleton().joints_left(), dataset.skeleton().joints_right()]
139
+ }
140
+ np.savez_compressed(output_filename_2d, positions_2d=output_2d_poses, metadata=metadata)
141
+
142
+ print('Done.')
data/prepare_data_humaneva.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2018-present, Facebook, Inc.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+
8
+ import argparse
9
+ import os
10
+ import re
11
+ import sys
12
+ from glob import glob
13
+
14
+ import numpy as np
15
+ from data_utils import suggest_metadata, suggest_pose_importer
16
+
17
+ sys.path.append('../')
18
+ from itertools import groupby
19
+
20
+ subjects = ['Train/S1', 'Train/S2', 'Train/S3', 'Validate/S1', 'Validate/S2', 'Validate/S3']
21
+
22
+ cam_map = {
23
+ 'C1': 0,
24
+ 'C2': 1,
25
+ 'C3': 2,
26
+ }
27
+
28
+ # Frame numbers for train/test split
29
+ # format: [start_frame, end_frame[ (inclusive, exclusive)
30
+ index = {
31
+ 'Train/S1': {
32
+ 'Walking 1': (590, 1203),
33
+ 'Jog 1': (367, 740),
34
+ 'ThrowCatch 1': (473, 945),
35
+ 'Gestures 1': (395, 801),
36
+ 'Box 1': (385, 789),
37
+ },
38
+ 'Train/S2': {
39
+ 'Walking 1': (438, 876),
40
+ 'Jog 1': (398, 795),
41
+ 'ThrowCatch 1': (550, 1128),
42
+ 'Gestures 1': (500, 901),
43
+ 'Box 1': (382, 734),
44
+ },
45
+ 'Train/S3': {
46
+ 'Walking 1': (448, 939),
47
+ 'Jog 1': (401, 842),
48
+ 'ThrowCatch 1': (493, 1027),
49
+ 'Gestures 1': (533, 1102),
50
+ 'Box 1': (512, 1021),
51
+ },
52
+ 'Validate/S1': {
53
+ 'Walking 1': (5, 590),
54
+ 'Jog 1': (5, 367),
55
+ 'ThrowCatch 1': (5, 473),
56
+ 'Gestures 1': (5, 395),
57
+ 'Box 1': (5, 385),
58
+ },
59
+ 'Validate/S2': {
60
+ 'Walking 1': (5, 438),
61
+ 'Jog 1': (5, 398),
62
+ 'ThrowCatch 1': (5, 550),
63
+ 'Gestures 1': (5, 500),
64
+ 'Box 1': (5, 382),
65
+ },
66
+ 'Validate/S3': {
67
+ 'Walking 1': (5, 448),
68
+ 'Jog 1': (5, 401),
69
+ 'ThrowCatch 1': (5, 493),
70
+ 'Gestures 1': (5, 533),
71
+ 'Box 1': (5, 512),
72
+ },
73
+ }
74
+
75
+ # Frames to skip for each video (synchronization)
76
+ sync_data = {
77
+ 'S1': {
78
+ 'Walking 1': (82, 81, 82),
79
+ 'Jog 1': (51, 51, 50),
80
+ 'ThrowCatch 1': (61, 61, 60),
81
+ 'Gestures 1': (45, 45, 44),
82
+ 'Box 1': (57, 57, 56),
83
+ },
84
+ 'S2': {
85
+ 'Walking 1': (115, 115, 114),
86
+ 'Jog 1': (100, 100, 99),
87
+ 'ThrowCatch 1': (127, 127, 127),
88
+ 'Gestures 1': (122, 122, 121),
89
+ 'Box 1': (119, 119, 117),
90
+ },
91
+ 'S3': {
92
+ 'Walking 1': (80, 80, 80),
93
+ 'Jog 1': (65, 65, 65),
94
+ 'ThrowCatch 1': (79, 79, 79),
95
+ 'Gestures 1': (83, 83, 82),
96
+ 'Box 1': (1, 1, 1),
97
+ },
98
+ 'S4': {}
99
+ }
100
+
101
+ if __name__ == '__main__':
102
+ if os.path.basename(os.getcwd()) != 'data':
103
+ print('This script must be launched from the "data" directory')
104
+ exit(0)
105
+
106
+ parser = argparse.ArgumentParser(description='HumanEva dataset converter')
107
+
108
+ parser.add_argument('-p', '--path', default='', type=str, metavar='PATH', help='path to the processed HumanEva dataset')
109
+ parser.add_argument('--convert-3d', action='store_true', help='convert 3D mocap data')
110
+ parser.add_argument('--convert-2d', default='', type=str, metavar='PATH', help='convert user-supplied 2D detections')
111
+ parser.add_argument('-o', '--output', default='', type=str, metavar='PATH', help='output suffix for 2D detections (e.g. detectron_pt_coco)')
112
+
113
+ args = parser.parse_args()
114
+
115
+ if not args.convert_2d and not args.convert_3d:
116
+ print('Please specify one conversion mode')
117
+ exit(0)
118
+
119
+ if args.path:
120
+ print('Parsing HumanEva dataset from', args.path)
121
+ output = {}
122
+ output_2d = {}
123
+ frame_mapping = {}
124
+
125
+ from scipy.io import loadmat
126
+
127
+ num_joints = None
128
+
129
+ for subject in subjects:
130
+ output[subject] = {}
131
+ output_2d[subject] = {}
132
+ split, subject_name = subject.split('/')
133
+ if subject_name not in frame_mapping:
134
+ frame_mapping[subject_name] = {}
135
+
136
+ file_list = glob(args.path + '/' + subject + '/*.mat')
137
+ for f in file_list:
138
+ action = os.path.splitext(os.path.basename(f))[0]
139
+
140
+ # Use consistent naming convention
141
+ canonical_name = action.replace('_', ' ')
142
+
143
+ hf = loadmat(f)
144
+ positions = hf['poses_3d']
145
+ positions_2d = hf['poses_2d'].transpose(1, 0, 2, 3) # Ground-truth 2D poses
146
+ assert positions.shape[0] == positions_2d.shape[0] and positions.shape[1] == positions_2d.shape[2]
147
+ assert num_joints is None or num_joints == positions.shape[1], "Joint number inconsistency among files"
148
+ num_joints = positions.shape[1]
149
+
150
+ # Sanity check for the sequence length
151
+ assert positions.shape[0] == index[subject][canonical_name][1] - index[subject][canonical_name][0]
152
+
153
+ # Split corrupted motion capture streams into contiguous chunks
154
+ # e.g. 012XX567X9 is split into "012", "567", and "9".
155
+ all_chunks = [list(v) for k, v in groupby(positions, lambda x: np.isfinite(x).all())]
156
+ all_chunks_2d = [list(v) for k, v in groupby(positions_2d, lambda x: np.isfinite(x).all())]
157
+ assert len(all_chunks) == len(all_chunks_2d)
158
+ current_index = index[subject][canonical_name][0]
159
+ chunk_indices = []
160
+ for i, chunk in enumerate(all_chunks):
161
+ next_index = current_index + len(chunk)
162
+ name = canonical_name + ' chunk' + str(i)
163
+ if np.isfinite(chunk).all():
164
+ output[subject][name] = np.array(chunk, dtype='float32') / 1000
165
+ output_2d[subject][name] = list(np.array(all_chunks_2d[i], dtype='float32').transpose(1, 0, 2, 3))
166
+ chunk_indices.append((current_index, next_index, np.isfinite(chunk).all(), split, name))
167
+ current_index = next_index
168
+ assert current_index == index[subject][canonical_name][1]
169
+ if canonical_name not in frame_mapping[subject_name]:
170
+ frame_mapping[subject_name][canonical_name] = []
171
+ frame_mapping[subject_name][canonical_name] += chunk_indices
172
+
173
+ metadata = suggest_metadata('humaneva' + str(num_joints))
174
+ output_filename = 'data_3d_' + metadata['layout_name']
175
+ output_prefix_2d = 'data_2d_' + metadata['layout_name'] + '_'
176
+
177
+ if args.convert_3d:
178
+ print('Saving...')
179
+ np.savez_compressed(output_filename, positions_3d=output)
180
+ np.savez_compressed(output_prefix_2d + 'gt', positions_2d=output_2d, metadata=metadata)
181
+ print('Done.')
182
+
183
+ else:
184
+ print('Please specify the dataset source')
185
+ exit(0)
186
+
187
+ if args.convert_2d:
188
+ if not args.output:
189
+ print('Please specify an output suffix (e.g. detectron_pt_coco)')
190
+ exit(0)
191
+
192
+ import_func = suggest_pose_importer(args.output)
193
+ metadata = suggest_metadata(args.output)
194
+
195
+ print('Parsing 2D detections from', args.convert_2d)
196
+
197
+ output = {}
198
+ file_list = glob(args.convert_2d + '/S*/*.avi.npz')
199
+ for f in file_list:
200
+ path, fname = os.path.split(f)
201
+ subject = os.path.basename(path)
202
+ assert subject.startswith('S'), subject + ' does not look like a subject directory'
203
+
204
+ m = re.search('(.*) \\((.*)\\)', fname.replace('_', ' '))
205
+ action = m.group(1)
206
+ camera = m.group(2)
207
+ camera_idx = cam_map[camera]
208
+
209
+ keypoints = import_func(f)
210
+ assert keypoints.shape[1] == metadata['num_joints']
211
+
212
+ if action in sync_data[subject]:
213
+ sync_offset = sync_data[subject][action][camera_idx] - 1
214
+ else:
215
+ sync_offset = 0
216
+
217
+ if subject in frame_mapping and action in frame_mapping[subject]:
218
+ chunks = frame_mapping[subject][action]
219
+ for (start_idx, end_idx, labeled, split, name) in chunks:
220
+ canonical_subject = split + '/' + subject
221
+ if not labeled:
222
+ canonical_subject = 'Unlabeled/' + canonical_subject
223
+ if canonical_subject not in output:
224
+ output[canonical_subject] = {}
225
+ kps = keypoints[start_idx + sync_offset:end_idx + sync_offset]
226
+ assert len(kps) == end_idx - start_idx, "Got len {}, expected {}".format(len(kps), end_idx - start_idx)
227
+
228
+ if name not in output[canonical_subject]:
229
+ output[canonical_subject][name] = [None, None, None]
230
+
231
+ output[canonical_subject][name][camera_idx] = kps.astype('float32')
232
+ else:
233
+ canonical_subject = 'Unlabeled/' + subject
234
+ if canonical_subject not in output:
235
+ output[canonical_subject] = {}
236
+ if action not in output[canonical_subject]:
237
+ output[canonical_subject][action] = [None, None, None]
238
+ output[canonical_subject][action][camera_idx] = keypoints.astype('float32')
239
+
240
+ print('Saving...')
241
+ np.savez_compressed(output_prefix_2d + args.output, positions_2d=output, metadata=metadata)
242
+ print('Done.')
joints_detectors/Alphapose/.gitignore ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ human_detection/output
2
+ examples/results
3
+ examples/res
4
+ PoseFlow/__pycache__
5
+ PoseFlow/*.npy
6
+ PoseFlow/alpha-pose-results-test.json
7
+ PoseFlow/alpha-pose-results-val.json
8
+ PoseFlow/test-predict
9
+ PoseFlow/val-predict
10
+ train_sppe/coco-minival500_images.txt
11
+ train_sppe/person_keypoints_val2014.json
12
+
13
+ ssd/examples
14
+ images
15
+
16
+ *.npy
17
+ *.so
18
+ *.pyc
19
+ .ipynb_checkpoints
20
+ */.ipynb_checkpoints/
21
+ */.tensorboard/*
22
+ */exp
23
+
24
+ *.pth
25
+ *.h5
26
+ *.zip
27
+ *.weights
28
+
29
+ coco-minival/
joints_detectors/Alphapose/LICENSE ADDED
@@ -0,0 +1,515 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ALPHAPOSE: MULTIPERSON KEYPOINT DETECTION
2
+ SOFTWARE LICENSE AGREEMENT
3
+ ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
4
+
5
+ BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
6
+
7
+ This is a license agreement ("Agreement") between your academic institution or non-profit organization or self (called "Licensee" or "You" in this Agreement) and Shanghai Jiao Tong University (called "Licensor" in this Agreement). All rights not specifically granted to you in this Agreement are reserved for Licensor.
8
+
9
+ RESERVATION OF OWNERSHIP AND GRANT OF LICENSE:
10
+ Licensor retains exclusive ownership of any copy of the Software (as defined below) licensed under this Agreement and hereby grants to Licensee a personal, non-exclusive,
11
+ non-transferable license to use the Software for noncommercial research purposes, without the right to sublicense, pursuant to the terms and conditions of this Agreement. As used in this Agreement, the term "Software" means (i) the actual copy of all or any portion of code for program routines made accessible to Licensee by Licensor pursuant to this Agreement, inclusive of backups, updates, and/or merged copies permitted hereunder or subsequently supplied by Licensor, including all or any file structures, programming instructions, user interfaces and screen formats and sequences as well as any and all documentation and instructions related to it, and (ii) all or any derivatives and/or modifications created or made by You to any of the items specified in (i).
12
+
13
+ CONFIDENTIALITY: Licensee acknowledges that the Software is proprietary to Licensor, and as such, Licensee agrees to receive all such materials in confidence and use the Software only in accordance with the terms of this Agreement. Licensee agrees to use reasonable effort to protect the Software from unauthorized use, reproduction, distribution, or publication.
14
+
15
+ PERMITTED USES: The Software may be used for your own noncommercial internal research purposes. You understand and agree that Licensor is not obligated to implement any suggestions and/or feedback you might provide regarding the Software, but to the extent Licensor does so, you are not entitled to any compensation related thereto.
16
+
17
+ DERIVATIVES: You may create derivatives of or make modifications to the Software, however, You agree that all and any such derivatives and modifications will be owned by Licensor and become a part of the Software licensed to You under this Agreement. You may only use such derivatives and modifications for your own noncommercial internal research purposes, and you may not otherwise use, distribute or copy such derivatives and modifications in violation of this Agreement.
18
+
19
+ BACKUPS: If Licensee is an organization, it may make that number of copies of the Software necessary for internal noncommercial use at a single site within its organization provided that all information appearing in or on the original labels, including the copyright and trademark notices are copied onto the labels of the copies.
20
+
21
+ USES NOT PERMITTED: You may not distribute, copy or use the Software except as explicitly permitted herein. Licensee has not been granted any trademark license as part of this Agreement and may not use the name or mark “AlphaPose", "Shanghai Jiao Tong" or any renditions thereof without the prior written permission of Licensor.
22
+
23
+ You may not sell, rent, lease, sublicense, lend, time-share or transfer, in whole or in part, or provide third parties access to prior or present versions (or any parts thereof) of the Software.
24
+
25
+ ASSIGNMENT: You may not assign this Agreement or your rights hereunder without the prior written consent of Licensor. Any attempted assignment without such consent shall be null and void.
26
+
27
+ TERM: The term of the license granted by this Agreement is from Licensee's acceptance of this Agreement by downloading the Software or by using the Software until terminated as provided below.
28
+
29
+ The Agreement automatically terminates without notice if you fail to comply with any provision of this Agreement. Licensee may terminate this Agreement by ceasing using the Software. Upon any termination of this Agreement, Licensee will delete any and all copies of the Software. You agree that all provisions which operate to protect the proprietary rights of Licensor shall remain in force should breach occur and that the obligation of confidentiality described in this Agreement is binding in perpetuity and, as such, survives the term of the Agreement.
30
+
31
+ FEE: Provided Licensee abides completely by the terms and conditions of this Agreement, there is no fee due to Licensor for Licensee's use of the Software in accordance with this Agreement.
32
+
33
+ DISCLAIMER OF WARRANTIES: THE SOFTWARE IS PROVIDED "AS-IS" WITHOUT WARRANTY OF ANY KIND INCLUDING ANY WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE OR OF NON-INFRINGEMENT. LICENSEE BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF THE SOFTWARE AND RELATED MATERIALS.
34
+
35
+ SUPPORT AND MAINTENANCE: No Software support or training by the Licensor is provided as part of this Agreement.
36
+
37
+ EXCLUSIVE REMEDY AND LIMITATION OF LIABILITY: To the maximum extent permitted under applicable law, Licensor shall not be liable for direct, indirect, special, incidental, or consequential damages or lost profits related to Licensee's use of and/or inability to use the Software, even if Licensor is advised of the possibility of such damage.
38
+
39
+ EXPORT REGULATION: Licensee agrees to comply with any and all applicable
40
+ U.S. export control laws, regulations, and/or other laws related to embargoes and sanction programs administered by the Office of Foreign Assets Control.
41
+
42
+ SEVERABILITY: If any provision(s) of this Agreement shall be held to be invalid, illegal, or unenforceable by a court or other tribunal of competent jurisdiction, the validity, legality and enforceability of the remaining provisions shall not in any way be affected or impaired thereby.
43
+
44
+ NO IMPLIED WAIVERS: No failure or delay by Licensor in enforcing any right or remedy under this Agreement shall be construed as a waiver of any future or other exercise of such right or remedy by Licensor.
45
+
46
+ ENTIRE AGREEMENT AND AMENDMENTS: This Agreement constitutes the sole and entire agreement between Licensee and Licensor as to the matter set forth herein and supersedes any previous agreements, understandings, and arrangements between the parties relating hereto.
47
+
48
+
49
+
50
+ ************************************************************************
51
+
52
+ THIRD-PARTY SOFTWARE NOTICES AND INFORMATION
53
+
54
+ This project incorporates material from the project(s) listed below (collectively, "Third Party Code"). This Third Party Code is licensed to you under their original license terms set forth below. We reserves all other rights not expressly granted, whether by implication, estoppel or otherwise.
55
+
56
+ 1. Torch, (https://github.com/torch/distro)
57
+
58
+ Copyright (c) 2016, Soumith Chintala, Ronan Collobert, Koray Kavukcuoglu, Clement Farabet All rights reserved.
59
+
60
+ Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
61
+
62
+ Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
63
+
64
+ Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
65
+
66
+ Neither the name of distro nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
67
+
68
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69
+
70
+ 2. TensorFlow (https://github.com/tensorflow/tensorflow)
71
+ Copyright 2018 The TensorFlow Authors. All rights reserved.
72
+
73
+ Apache License
74
+ Version 2.0, January 2004
75
+ http://www.apache.org/licenses/
76
+
77
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
78
+
79
+ 1. Definitions.
80
+
81
+ "License" shall mean the terms and conditions for use, reproduction,
82
+ and distribution as defined by Sections 1 through 9 of this document.
83
+
84
+ "Licensor" shall mean the copyright owner or entity authorized by
85
+ the copyright owner that is granting the License.
86
+
87
+ "Legal Entity" shall mean the union of the acting entity and all
88
+ other entities that control, are controlled by, or are under common
89
+ control with that entity. For the purposes of this definition,
90
+ "control" means (i) the power, direct or indirect, to cause the
91
+ direction or management of such entity, whether by contract or
92
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
93
+ outstanding shares, or (iii) beneficial ownership of such entity.
94
+
95
+ "You" (or "Your") shall mean an individual or Legal Entity
96
+ exercising permissions granted by this License.
97
+
98
+ "Source" form shall mean the preferred form for making modifications,
99
+ including but not limited to software source code, documentation
100
+ source, and configuration files.
101
+
102
+ "Object" form shall mean any form resulting from mechanical
103
+ transformation or translation of a Source form, including but
104
+ not limited to compiled object code, generated documentation,
105
+ and conversions to other media types.
106
+
107
+ "Work" shall mean the work of authorship, whether in Source or
108
+ Object form, made available under the License, as indicated by a
109
+ copyright notice that is included in or attached to the work
110
+ (an example is provided in the Appendix below).
111
+
112
+ "Derivative Works" shall mean any work, whether in Source or Object
113
+ form, that is based on (or derived from) the Work and for which the
114
+ editorial revisions, annotations, elaborations, or other modifications
115
+ represent, as a whole, an original work of authorship. For the purposes
116
+ of this License, Derivative Works shall not include works that remain
117
+ separable from, or merely link (or bind by name) to the interfaces of,
118
+ the Work and Derivative Works thereof.
119
+
120
+ "Contribution" shall mean any work of authorship, including
121
+ the original version of the Work and any modifications or additions
122
+ to that Work or Derivative Works thereof, that is intentionally
123
+ submitted to Licensor for inclusion in the Work by the copyright owner
124
+ or by an individual or Legal Entity authorized to submit on behalf of
125
+ the copyright owner. For the purposes of this definition, "submitted"
126
+ means any form of electronic, verbal, or written communication sent
127
+ to the Licensor or its representatives, including but not limited to
128
+ communication on electronic mailing lists, source code control systems,
129
+ and issue tracking systems that are managed by, or on behalf of, the
130
+ Licensor for the purpose of discussing and improving the Work, but
131
+ excluding communication that is conspicuously marked or otherwise
132
+ designated in writing by the copyright owner as "Not a Contribution."
133
+
134
+ "Contributor" shall mean Licensor and any individual or Legal Entity
135
+ on behalf of whom a Contribution has been received by Licensor and
136
+ subsequently incorporated within the Work.
137
+
138
+ 2. Grant of Copyright License. Subject to the terms and conditions of
139
+ this License, each Contributor hereby grants to You a perpetual,
140
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
141
+ copyright license to reproduce, prepare Derivative Works of,
142
+ publicly display, publicly perform, sublicense, and distribute the
143
+ Work and such Derivative Works in Source or Object form.
144
+
145
+ 3. Grant of Patent License. Subject to the terms and conditions of
146
+ this License, each Contributor hereby grants to You a perpetual,
147
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
148
+ (except as stated in this section) patent license to make, have made,
149
+ use, offer to sell, sell, import, and otherwise transfer the Work,
150
+ where such license applies only to those patent claims licensable
151
+ by such Contributor that are necessarily infringed by their
152
+ Contribution(s) alone or by combination of their Contribution(s)
153
+ with the Work to which such Contribution(s) was submitted. If You
154
+ institute patent litigation against any entity (including a
155
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
156
+ or a Contribution incorporated within the Work constitutes direct
157
+ or contributory patent infringement, then any patent licenses
158
+ granted to You under this License for that Work shall terminate
159
+ as of the date such litigation is filed.
160
+
161
+ 4. Redistribution. You may reproduce and distribute copies of the
162
+ Work or Derivative Works thereof in any medium, with or without
163
+ modifications, and in Source or Object form, provided that You
164
+ meet the following conditions:
165
+
166
+ (a) You must give any other recipients of the Work or
167
+ Derivative Works a copy of this License; and
168
+
169
+ (b) You must cause any modified files to carry prominent notices
170
+ stating that You changed the files; and
171
+
172
+ (c) You must retain, in the Source form of any Derivative Works
173
+ that You distribute, all copyright, patent, trademark, and
174
+ attribution notices from the Source form of the Work,
175
+ excluding those notices that do not pertain to any part of
176
+ the Derivative Works; and
177
+
178
+ (d) If the Work includes a "NOTICE" text file as part of its
179
+ distribution, then any Derivative Works that You distribute must
180
+ include a readable copy of the attribution notices contained
181
+ within such NOTICE file, excluding those notices that do not
182
+ pertain to any part of the Derivative Works, in at least one
183
+ of the following places: within a NOTICE text file distributed
184
+ as part of the Derivative Works; within the Source form or
185
+ documentation, if provided along with the Derivative Works; or,
186
+ within a display generated by the Derivative Works, if and
187
+ wherever such third-party notices normally appear. The contents
188
+ of the NOTICE file are for informational purposes only and
189
+ do not modify the License. You may add Your own attribution
190
+ notices within Derivative Works that You distribute, alongside
191
+ or as an addendum to the NOTICE text from the Work, provided
192
+ that such additional attribution notices cannot be construed
193
+ as modifying the License.
194
+
195
+ You may add Your own copyright statement to Your modifications and
196
+ may provide additional or different license terms and conditions
197
+ for use, reproduction, or distribution of Your modifications, or
198
+ for any such Derivative Works as a whole, provided Your use,
199
+ reproduction, and distribution of the Work otherwise complies with
200
+ the conditions stated in this License.
201
+
202
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
203
+ any Contribution intentionally submitted for inclusion in the Work
204
+ by You to the Licensor shall be under the terms and conditions of
205
+ this License, without any additional terms or conditions.
206
+ Notwithstanding the above, nothing herein shall supersede or modify
207
+ the terms of any separate license agreement you may have executed
208
+ with Licensor regarding such Contributions.
209
+
210
+ 6. Trademarks. This License does not grant permission to use the trade
211
+ names, trademarks, service marks, or product names of the Licensor,
212
+ except as required for reasonable and customary use in describing the
213
+ origin of the Work and reproducing the content of the NOTICE file.
214
+
215
+ 7. Disclaimer of Warranty. Unless required by applicable law or
216
+ agreed to in writing, Licensor provides the Work (and each
217
+ Contributor provides its Contributions) on an "AS IS" BASIS,
218
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
219
+ implied, including, without limitation, any warranties or conditions
220
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
221
+ PARTICULAR PURPOSE. You are solely responsible for determining the
222
+ appropriateness of using or redistributing the Work and assume any
223
+ risks associated with Your exercise of permissions under this License.
224
+
225
+ 8. Limitation of Liability. In no event and under no legal theory,
226
+ whether in tort (including negligence), contract, or otherwise,
227
+ unless required by applicable law (such as deliberate and grossly
228
+ negligent acts) or agreed to in writing, shall any Contributor be
229
+ liable to You for damages, including any direct, indirect, special,
230
+ incidental, or consequential damages of any character arising as a
231
+ result of this License or out of the use or inability to use the
232
+ Work (including but not limited to damages for loss of goodwill,
233
+ work stoppage, computer failure or malfunction, or any and all
234
+ other commercial damages or losses), even if such Contributor
235
+ has been advised of the possibility of such damages.
236
+
237
+ 9. Accepting Warranty or Additional Liability. While redistributing
238
+ the Work or Derivative Works thereof, You may choose to offer,
239
+ and charge a fee for, acceptance of support, warranty, indemnity,
240
+ or other liability obligations and/or rights consistent with this
241
+ License. However, in accepting such obligations, You may act only
242
+ on Your own behalf and on Your sole responsibility, not on behalf
243
+ of any other Contributor, and only if You agree to indemnify,
244
+ defend, and hold each Contributor harmless for any liability
245
+ incurred by, or claims asserted against, such Contributor by reason
246
+ of your accepting any such warranty or additional liability.
247
+
248
+ END OF TERMS AND CONDITIONS
249
+
250
+ APPENDIX: How to apply the Apache License to your work.
251
+
252
+ To apply the Apache License to your work, attach the following
253
+ boilerplate notice, with the fields enclosed by brackets "[]"
254
+ replaced with your own identifying information. (Don't include
255
+ the brackets!) The text should be enclosed in the appropriate
256
+ comment syntax for the file format. We also recommend that a
257
+ file or class name and description of purpose be included on the
258
+ same "printed page" as the copyright notice for easier
259
+ identification within third-party archives.
260
+
261
+ Copyright 2017, The TensorFlow Authors.
262
+
263
+ Licensed under the Apache License, Version 2.0 (the "License");
264
+ you may not use this file except in compliance with the License.
265
+ You may obtain a copy of the License at
266
+
267
+ http://www.apache.org/licenses/LICENSE-2.0
268
+
269
+ Unless required by applicable law or agreed to in writing, software
270
+ distributed under the License is distributed on an "AS IS" BASIS,
271
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
272
+ See the License for the specific language governing permissions and
273
+ limitations under the License.
274
+
275
+ 3. tf-faster-rcnn (https://github.com/endernewton/tf-faster-rcnn)
276
+ MIT License
277
+
278
+ Copyright (c) 2017 Xinlei Chen
279
+
280
+ Permission is hereby granted, free of charge, to any person obtaining a copy
281
+ of this software and associated documentation files (the "Software"), to deal
282
+ in the Software without restriction, including without limitation the rights
283
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
284
+ copies of the Software, and to permit persons to whom the Software is
285
+ furnished to do so, subject to the following conditions:
286
+
287
+ The above copyright notice and this permission notice shall be included in all
288
+ copies or substantial portions of the Software.
289
+
290
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
291
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
292
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
293
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
294
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
295
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
296
+ SOFTWARE.
297
+
298
+ 4.PyraNet (https://github.com/bearpaw/PyraNet)
299
+ Apache License
300
+ Version 2.0, January 2004
301
+ http://www.apache.org/licenses/
302
+
303
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
304
+
305
+ 1. Definitions.
306
+
307
+ "License" shall mean the terms and conditions for use, reproduction,
308
+ and distribution as defined by Sections 1 through 9 of this document.
309
+
310
+ "Licensor" shall mean the copyright owner or entity authorized by
311
+ the copyright owner that is granting the License.
312
+
313
+ "Legal Entity" shall mean the union of the acting entity and all
314
+ other entities that control, are controlled by, or are under common
315
+ control with that entity. For the purposes of this definition,
316
+ "control" means (i) the power, direct or indirect, to cause the
317
+ direction or management of such entity, whether by contract or
318
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
319
+ outstanding shares, or (iii) beneficial ownership of such entity.
320
+
321
+ "You" (or "Your") shall mean an individual or Legal Entity
322
+ exercising permissions granted by this License.
323
+
324
+ "Source" form shall mean the preferred form for making modifications,
325
+ including but not limited to software source code, documentation
326
+ source, and configuration files.
327
+
328
+ "Object" form shall mean any form resulting from mechanical
329
+ transformation or translation of a Source form, including but
330
+ not limited to compiled object code, generated documentation,
331
+ and conversions to other media types.
332
+
333
+ "Work" shall mean the work of authorship, whether in Source or
334
+ Object form, made available under the License, as indicated by a
335
+ copyright notice that is included in or attached to the work
336
+ (an example is provided in the Appendix below).
337
+
338
+ "Derivative Works" shall mean any work, whether in Source or Object
339
+ form, that is based on (or derived from) the Work and for which the
340
+ editorial revisions, annotations, elaborations, or other modifications
341
+ represent, as a whole, an original work of authorship. For the purposes
342
+ of this License, Derivative Works shall not include works that remain
343
+ separable from, or merely link (or bind by name) to the interfaces of,
344
+ the Work and Derivative Works thereof.
345
+
346
+ "Contribution" shall mean any work of authorship, including
347
+ the original version of the Work and any modifications or additions
348
+ to that Work or Derivative Works thereof, that is intentionally
349
+ submitted to Licensor for inclusion in the Work by the copyright owner
350
+ or by an individual or Legal Entity authorized to submit on behalf of
351
+ the copyright owner. For the purposes of this definition, "submitted"
352
+ means any form of electronic, verbal, or written communication sent
353
+ to the Licensor or its representatives, including but not limited to
354
+ communication on electronic mailing lists, source code control systems,
355
+ and issue tracking systems that are managed by, or on behalf of, the
356
+ Licensor for the purpose of discussing and improving the Work, but
357
+ excluding communication that is conspicuously marked or otherwise
358
+ designated in writing by the copyright owner as "Not a Contribution."
359
+
360
+ "Contributor" shall mean Licensor and any individual or Legal Entity
361
+ on behalf of whom a Contribution has been received by Licensor and
362
+ subsequently incorporated within the Work.
363
+
364
+ 2. Grant of Copyright License. Subject to the terms and conditions of
365
+ this License, each Contributor hereby grants to You a perpetual,
366
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
367
+ copyright license to reproduce, prepare Derivative Works of,
368
+ publicly display, publicly perform, sublicense, and distribute the
369
+ Work and such Derivative Works in Source or Object form.
370
+
371
+ 3. Grant of Patent License. Subject to the terms and conditions of
372
+ this License, each Contributor hereby grants to You a perpetual,
373
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
374
+ (except as stated in this section) patent license to make, have made,
375
+ use, offer to sell, sell, import, and otherwise transfer the Work,
376
+ where such license applies only to those patent claims licensable
377
+ by such Contributor that are necessarily infringed by their
378
+ Contribution(s) alone or by combination of their Contribution(s)
379
+ with the Work to which such Contribution(s) was submitted. If You
380
+ institute patent litigation against any entity (including a
381
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
382
+ or a Contribution incorporated within the Work constitutes direct
383
+ or contributory patent infringement, then any patent licenses
384
+ granted to You under this License for that Work shall terminate
385
+ as of the date such litigation is filed.
386
+
387
+ 4. Redistribution. You may reproduce and distribute copies of the
388
+ Work or Derivative Works thereof in any medium, with or without
389
+ modifications, and in Source or Object form, provided that You
390
+ meet the following conditions:
391
+
392
+ (a) You must give any other recipients of the Work or
393
+ Derivative Works a copy of this License; and
394
+
395
+ (b) You must cause any modified files to carry prominent notices
396
+ stating that You changed the files; and
397
+
398
+ (c) You must retain, in the Source form of any Derivative Works
399
+ that You distribute, all copyright, patent, trademark, and
400
+ attribution notices from the Source form of the Work,
401
+ excluding those notices that do not pertain to any part of
402
+ the Derivative Works; and
403
+
404
+ (d) If the Work includes a "NOTICE" text file as part of its
405
+ distribution, then any Derivative Works that You distribute must
406
+ include a readable copy of the attribution notices contained
407
+ within such NOTICE file, excluding those notices that do not
408
+ pertain to any part of the Derivative Works, in at least one
409
+ of the following places: within a NOTICE text file distributed
410
+ as part of the Derivative Works; within the Source form or
411
+ documentation, if provided along with the Derivative Works; or,
412
+ within a display generated by the Derivative Works, if and
413
+ wherever such third-party notices normally appear. The contents
414
+ of the NOTICE file are for informational purposes only and
415
+ do not modify the License. You may add Your own attribution
416
+ notices within Derivative Works that You distribute, alongside
417
+ or as an addendum to the NOTICE text from the Work, provided
418
+ that such additional attribution notices cannot be construed
419
+ as modifying the License.
420
+
421
+ You may add Your own copyright statement to Your modifications and
422
+ may provide additional or different license terms and conditions
423
+ for use, reproduction, or distribution of Your modifications, or
424
+ for any such Derivative Works as a whole, provided Your use,
425
+ reproduction, and distribution of the Work otherwise complies with
426
+ the conditions stated in this License.
427
+
428
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
429
+ any Contribution intentionally submitted for inclusion in the Work
430
+ by You to the Licensor shall be under the terms and conditions of
431
+ this License, without any additional terms or conditions.
432
+ Notwithstanding the above, nothing herein shall supersede or modify
433
+ the terms of any separate license agreement you may have executed
434
+ with Licensor regarding such Contributions.
435
+
436
+ 6. Trademarks. This License does not grant permission to use the trade
437
+ names, trademarks, service marks, or product names of the Licensor,
438
+ except as required for reasonable and customary use in describing the
439
+ origin of the Work and reproducing the content of the NOTICE file.
440
+
441
+ 7. Disclaimer of Warranty. Unless required by applicable law or
442
+ agreed to in writing, Licensor provides the Work (and each
443
+ Contributor provides its Contributions) on an "AS IS" BASIS,
444
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
445
+ implied, including, without limitation, any warranties or conditions
446
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
447
+ PARTICULAR PURPOSE. You are solely responsible for determining the
448
+ appropriateness of using or redistributing the Work and assume any
449
+ risks associated with Your exercise of permissions under this License.
450
+
451
+ 8. Limitation of Liability. In no event and under no legal theory,
452
+ whether in tort (including negligence), contract, or otherwise,
453
+ unless required by applicable law (such as deliberate and grossly
454
+ negligent acts) or agreed to in writing, shall any Contributor be
455
+ liable to You for damages, including any direct, indirect, special,
456
+ incidental, or consequential damages of any character arising as a
457
+ result of this License or out of the use or inability to use the
458
+ Work (including but not limited to damages for loss of goodwill,
459
+ work stoppage, computer failure or malfunction, or any and all
460
+ other commercial damages or losses), even if such Contributor
461
+ has been advised of the possibility of such damages.
462
+
463
+ 9. Accepting Warranty or Additional Liability. While redistributing
464
+ the Work or Derivative Works thereof, You may choose to offer,
465
+ and charge a fee for, acceptance of support, warranty, indemnity,
466
+ or other liability obligations and/or rights consistent with this
467
+ License. However, in accepting such obligations, You may act only
468
+ on Your own behalf and on Your sole responsibility, not on behalf
469
+ of any other Contributor, and only if You agree to indemnify,
470
+ defend, and hold each Contributor harmless for any liability
471
+ incurred by, or claims asserted against, such Contributor by reason
472
+ of your accepting any such warranty or additional liability.
473
+
474
+ END OF TERMS AND CONDITIONS
475
+
476
+ APPENDIX: How to apply the Apache License to your work.
477
+
478
+ To apply the Apache License to your work, attach the following
479
+ boilerplate notice, with the fields enclosed by brackets "{}"
480
+ replaced with your own identifying information. (Don't include
481
+ the brackets!) The text should be enclosed in the appropriate
482
+ comment syntax for the file format. We also recommend that a
483
+ file or class name and description of purpose be included on the
484
+ same "printed page" as the copyright notice for easier
485
+ identification within third-party archives.
486
+
487
+ Copyright {yyyy} {name of copyright owner}
488
+
489
+ Licensed under the Apache License, Version 2.0 (the "License");
490
+ you may not use this file except in compliance with the License.
491
+ You may obtain a copy of the License at
492
+
493
+ http://www.apache.org/licenses/LICENSE-2.0
494
+
495
+ Unless required by applicable law or agreed to in writing, software
496
+ distributed under the License is distributed on an "AS IS" BASIS,
497
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
498
+ See the License for the specific language governing permissions and
499
+ limitations under the License.
500
+
501
+ 5. pose-hg-demo (https://github.com/umich-vl/pose-hg-demo)
502
+ Copyright (c) 2016, University of Michigan
503
+ All rights reserved.
504
+
505
+ Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
506
+
507
+ 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
508
+
509
+ 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
510
+
511
+ 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
512
+
513
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
514
+
515
+ ************END OF THIRD-PARTY SOFTWARE NOTICES AND INFORMATION**********
joints_detectors/Alphapose/README.md ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ <div align="center">
3
+ <img src="doc/logo.jpg", width="400">
4
+ </div>
5
+
6
+
7
+ ## News!
8
+ - Apr 2019: [**MXNet** version](https://github.com/MVIG-SJTU/AlphaPose/tree/mxnet) of AlphaPose is released! It runs at **23 fps** on COCO validation set.
9
+ - Feb 2019: [CrowdPose](https://github.com/MVIG-SJTU/AlphaPose/blob/pytorch/doc/CrowdPose.md) is integrated into AlphaPose Now!
10
+ - Dec 2018: [General version](https://github.com/MVIG-SJTU/AlphaPose/tree/pytorch/PoseFlow) of PoseFlow is released! 3X Faster and support pose tracking results visualization!
11
+ - Sep 2018: [**PyTorch** version](https://github.com/MVIG-SJTU/AlphaPose/tree/pytorch) of AlphaPose is released! It runs at **20 fps** on COCO validation set (4.6 people per image on average) and achieves 71 mAP!
12
+
13
+ ## AlphaPose
14
+ [Alpha Pose](http://www.mvig.org/research/alphapose.html) is an accurate multi-person pose estimator, which is the **first open-source system that achieves 70+ mAP (72.3 mAP) on COCO dataset and 80+ mAP (82.1 mAP) on MPII dataset.**
15
+ To match poses that correspond to the same person across frames, we also provide an efficient online pose tracker called Pose Flow. It is the **first open-source online pose tracker that achieves both 60+ mAP (66.5 mAP) and 50+ MOTA (58.3 MOTA) on PoseTrack Challenge dataset.**
16
+
17
+ AlphaPose supports both Linux and **Windows!**
18
+
19
+ <div align="center">
20
+ <img src="doc/alphapose.gif", width="400">
21
+ </div>
22
+
23
+
24
+ ## Installation
25
+ **Windows Version** please check out [doc/win_install.md](doc/win_install.md)
26
+
27
+ 1. Get the code.
28
+ ```Shell
29
+ git clone -b pytorch https://github.com/MVIG-SJTU/AlphaPose.git
30
+ ```
31
+
32
+ 2. Install [pytorch 0.4.0](https://github.com/pytorch/pytorch) and other dependencies.
33
+ ```Shell
34
+ pip install -r requirements.txt
35
+ ```
36
+
37
+ 3. Download the models manually: **duc_se.pth** (2018/08/30) ([Google Drive]( https://drive.google.com/open?id=1OPORTWB2cwd5YTVBX-NE8fsauZJWsrtW) | [Baidu pan](https://pan.baidu.com/s/15jbRNKuslzm5wRSgUVytrA)), **yolov3-spp.weights**([Google Drive](https://drive.google.com/open?id=1D47msNOOiJKvPOXlnpyzdKA3k6E97NTC) | [Baidu pan](https://pan.baidu.com/s/1Zb2REEIk8tcahDa8KacPNA)). Place them into `./models/sppe` and `./models/yolo` respectively.
38
+
39
+
40
+ ## Quick Start
41
+ - **Input dir**: Run AlphaPose for all images in a folder with:
42
+ ```
43
+ python3 demo.py --indir ${img_directory} --outdir examples/res
44
+ ```
45
+ - **Video**: Run AlphaPose for a video and save the rendered video with:
46
+ ```
47
+ python3 video_demo.py --video ${path to video} --outdir examples/res --save_video
48
+ ```
49
+ - **Webcam**: Run AlphaPose using webcam and visualize the results with:
50
+ ```
51
+ python3 webcam_demo.py --webcam 0 --outdir examples/res --vis
52
+ ```
53
+ - **Input list**: Run AlphaPose for images in a list and save the rendered images with:
54
+ ```
55
+ python3 demo.py --list examples/list-coco-demo.txt --indir ${img_directory} --outdir examples/res --save_img
56
+ ```
57
+ - **Note**: If you meet OOM(out of memory) problem, decreasing the pose estimation batch until the program can run on your computer:
58
+ ```
59
+ python3 demo.py --indir ${img_directory} --outdir examples/res --posebatch 30
60
+ ```
61
+ - **Getting more accurate**: You can enable flip testing to get more accurate results by disable fast_inference, e.g.:
62
+ ```
63
+ python3 demo.py --indir ${img_directory} --outdir examples/res --fast_inference False
64
+ ```
65
+ - **Speeding up**: Checkout the [speed_up.md](doc/speed_up.md) for more details.
66
+ - **Output format**: Checkout the [output.md](doc/output.md) for more details.
67
+ - **For more**: Checkout the [run.md](doc/run.md) for more options
68
+
69
+ ## Pose Tracking
70
+
71
+ <p align='center'>
72
+ <img src="doc/posetrack.gif", width="360">
73
+ <img src="doc/posetrack2.gif", width="344">
74
+ </p>
75
+
76
+ Please read [PoseFlow/README.md](PoseFlow/) for details.
77
+
78
+ ### CrowdPose
79
+ <p align='center'>
80
+ <img src="doc/crowdpose.gif", width="360">
81
+ </p>
82
+
83
+ Please read [doc/CrowdPose.md](doc/CrowdPose.md) for details.
84
+
85
+
86
+ ## FAQ
87
+ Check out [faq.md](doc/faq.md) for faq.
88
+
89
+ ## Contributors
90
+ Pytorch version of AlphaPose is developed and maintained by [Jiefeng Li](http://jeff-leaf.site/), [Hao-Shu Fang](https://fang-haoshu.github.io/), [Yuliang Xiu](http://xiuyuliang.cn) and [Cewu Lu](http://www.mvig.org/).
91
+
92
+ ## Citation
93
+ Please cite these papers in your publications if it helps your research:
94
+
95
+ @inproceedings{fang2017rmpe,
96
+ title={{RMPE}: Regional Multi-person Pose Estimation},
97
+ author={Fang, Hao-Shu and Xie, Shuqin and Tai, Yu-Wing and Lu, Cewu},
98
+ booktitle={ICCV},
99
+ year={2017}
100
+ }
101
+
102
+ @inproceedings{xiu2018poseflow,
103
+ author = {Xiu, Yuliang and Li, Jiefeng and Wang, Haoyu and Fang, Yinghong and Lu, Cewu},
104
+ title = {{Pose Flow}: Efficient Online Pose Tracking},
105
+ booktitle={BMVC},
106
+ year = {2018}
107
+ }
108
+
109
+
110
+
111
+ ## License
112
+ AlphaPose is freely available for free non-commercial use, and may be redistributed under these conditions. For commercial queries, please drop an e-mail at mvig.alphapose[at]gmail[dot]com and cc lucewu[[at]sjtu[dot]edu[dot]cn. We will send the detail agreement to you.
joints_detectors/Alphapose/SPPE/.gitattributes ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # Auto detect text files and perform LF normalization
2
+ * text=auto
joints_detectors/Alphapose/SPPE/.gitignore ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ *.egg-info/
24
+ .installed.cfg
25
+ *.egg
26
+
27
+ # PyInstaller
28
+ # Usually these files are written by a python script from a template
29
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
30
+ *.manifest
31
+ *.spec
32
+
33
+ # Installer logs
34
+ pip-log.txt
35
+ pip-delete-this-directory.txt
36
+
37
+ # Unit test / coverage reports
38
+ htmlcov/
39
+ .tox/
40
+ .coverage
41
+ .coverage.*
42
+ .cache
43
+ nosetests.xml
44
+ coverage.xml
45
+ *.cover
46
+ .hypothesis/
47
+
48
+ # Translations
49
+ *.mo
50
+ *.pot
51
+
52
+ # Django stuff:
53
+ *.log
54
+ local_settings.py
55
+
56
+ # Flask stuff:
57
+ instance/
58
+ .webassets-cache
59
+
60
+ # Scrapy stuff:
61
+ .scrapy
62
+
63
+ # Sphinx documentation
64
+ docs/_build/
65
+
66
+ # PyBuilder
67
+ target/
68
+
69
+ # Jupyter Notebook
70
+ .ipynb_checkpoints
71
+
72
+ # pyenv
73
+ .python-version
74
+
75
+ # celery beat schedule file
76
+ celerybeat-schedule
77
+
78
+ # SageMath parsed files
79
+ *.sage.py
80
+
81
+ # Environments
82
+ .env
83
+ .venv
84
+ env/
85
+ venv/
86
+ ENV/
87
+
88
+ # Spyder project settings
89
+ .spyderproject
90
+ .spyproject
91
+
92
+ # Rope project settings
93
+ .ropeproject
94
+
95
+ # mkdocs documentation
96
+ /site
97
+
98
+ # mypy
99
+ .mypy_cache/
100
+
101
+ .vscode/
102
+ *.pkl
103
+ exp
104
+ exp/*
105
+ data
106
+ data/*
107
+ model
108
+ model/*
109
+ */images
110
+ */images/*
111
+
112
+ *.h5
113
+ *.pth
114
+
joints_detectors/Alphapose/SPPE/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2018 Jeff-sjtu
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
joints_detectors/Alphapose/SPPE/README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ # pytorch-AlphaPose
joints_detectors/Alphapose/SPPE/__init__.py ADDED
File without changes
joints_detectors/Alphapose/SPPE/src/__init__.py ADDED
File without changes
joints_detectors/Alphapose/SPPE/src/main_fast_inference.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+
3
+ import torch
4
+ import torch._utils
5
+ import torch.nn as nn
6
+ import torch.utils.data
7
+ import torch.utils.data.distributed
8
+
9
+ from SPPE.src.models.FastPose import createModel
10
+ from SPPE.src.utils.img import flip, shuffleLR
11
+
12
+ try:
13
+ torch._utils._rebuild_tensor_v2
14
+ except AttributeError:
15
+ def _rebuild_tensor_v2(storage, storage_offset, size, stride, requires_grad, backward_hooks):
16
+ tensor = torch._utils._rebuild_tensor(storage, storage_offset, size, stride)
17
+ tensor.requires_grad = requires_grad
18
+ tensor._backward_hooks = backward_hooks
19
+ return tensor
20
+ torch._utils._rebuild_tensor_v2 = _rebuild_tensor_v2
21
+
22
+
23
+ class InferenNet(nn.Module):
24
+ def __init__(self, kernel_size, dataset):
25
+ super(InferenNet, self).__init__()
26
+
27
+ model = createModel().cuda()
28
+ print('Loading pose model from {}'.format('joints_detectors/Alphapose/models/sppe/duc_se.pth'))
29
+ sys.stdout.flush()
30
+ model.load_state_dict(torch.load('joints_detectors/Alphapose/models/sppe/duc_se.pth'))
31
+ model.eval()
32
+ self.pyranet = model
33
+
34
+ self.dataset = dataset
35
+
36
+ def forward(self, x):
37
+ out = self.pyranet(x)
38
+ out = out.narrow(1, 0, 17)
39
+
40
+ flip_out = self.pyranet(flip(x))
41
+ flip_out = flip_out.narrow(1, 0, 17)
42
+
43
+ flip_out = flip(shuffleLR(
44
+ flip_out, self.dataset))
45
+
46
+ out = (flip_out + out) / 2
47
+
48
+ return out
49
+
50
+
51
+ class InferenNet_fast(nn.Module):
52
+ def __init__(self, kernel_size, dataset):
53
+ super(InferenNet_fast, self).__init__()
54
+
55
+ model = createModel().cuda()
56
+ print('Loading pose model from {}'.format('models/sppe/duc_se.pth'))
57
+ model.load_state_dict(torch.load('models/sppe/duc_se.pth'))
58
+ model.eval()
59
+ self.pyranet = model
60
+
61
+ self.dataset = dataset
62
+
63
+ def forward(self, x):
64
+ out = self.pyranet(x)
65
+ out = out.narrow(1, 0, 17)
66
+
67
+ return out
joints_detectors/Alphapose/SPPE/src/models/FastPose.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from torch.autograd import Variable
3
+
4
+ from .layers.SE_Resnet import SEResnet
5
+ from .layers.DUC import DUC
6
+ from opt import opt
7
+
8
+
9
+ def createModel():
10
+ return FastPose()
11
+
12
+
13
+ class FastPose(nn.Module):
14
+ DIM = 128
15
+
16
+ def __init__(self):
17
+ super(FastPose, self).__init__()
18
+
19
+ self.preact = SEResnet('resnet101')
20
+
21
+ self.suffle1 = nn.PixelShuffle(2)
22
+ self.duc1 = DUC(512, 1024, upscale_factor=2)
23
+ self.duc2 = DUC(256, 512, upscale_factor=2)
24
+
25
+ self.conv_out = nn.Conv2d(
26
+ self.DIM, opt.nClasses, kernel_size=3, stride=1, padding=1)
27
+
28
+ def forward(self, x: Variable):
29
+ out = self.preact(x)
30
+ out = self.suffle1(out)
31
+ out = self.duc1(out)
32
+ out = self.duc2(out)
33
+
34
+ out = self.conv_out(out)
35
+ return out
joints_detectors/Alphapose/SPPE/src/models/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from . import *
joints_detectors/Alphapose/SPPE/src/models/hg-prm.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from .layers.PRM import Residual as ResidualPyramid
3
+ from .layers.Residual import Residual as Residual
4
+ from torch.autograd import Variable
5
+ from opt import opt
6
+ from collections import defaultdict
7
+
8
+
9
+ class Hourglass(nn.Module):
10
+ def __init__(self, n, nFeats, nModules, inputResH, inputResW, net_type, B, C):
11
+ super(Hourglass, self).__init__()
12
+
13
+ self.ResidualUp = ResidualPyramid if n >= 2 else Residual
14
+ self.ResidualDown = ResidualPyramid if n >= 3 else Residual
15
+
16
+ self.depth = n
17
+ self.nModules = nModules
18
+ self.nFeats = nFeats
19
+ self.net_type = net_type
20
+ self.B = B
21
+ self.C = C
22
+ self.inputResH = inputResH
23
+ self.inputResW = inputResW
24
+
25
+ self.up1 = self._make_residual(self.ResidualUp, False, inputResH, inputResW)
26
+ self.low1 = nn.Sequential(
27
+ nn.MaxPool2d(2),
28
+ self._make_residual(self.ResidualDown, False, inputResH / 2, inputResW / 2)
29
+ )
30
+ if n > 1:
31
+ self.low2 = Hourglass(n - 1, nFeats, nModules, inputResH / 2, inputResW / 2, net_type, B, C)
32
+ else:
33
+ self.low2 = self._make_residual(self.ResidualDown, False, inputResH / 2, inputResW / 2)
34
+
35
+ self.low3 = self._make_residual(self.ResidualDown, True, inputResH / 2, inputResW / 2)
36
+ self.up2 = nn.UpsamplingNearest2d(scale_factor=2)
37
+
38
+ self.upperBranch = self.up1
39
+ self.lowerBranch = nn.Sequential(
40
+ self.low1,
41
+ self.low2,
42
+ self.low3,
43
+ self.up2
44
+ )
45
+
46
+ def _make_residual(self, resBlock, useConv, inputResH, inputResW):
47
+ layer_list = []
48
+ for i in range(self.nModules):
49
+ layer_list.append(resBlock(self.nFeats, self.nFeats, inputResH, inputResW,
50
+ stride=1, net_type=self.net_type, useConv=useConv,
51
+ baseWidth=self.B, cardinality=self.C))
52
+ return nn.Sequential(*layer_list)
53
+
54
+ def forward(self, x: Variable):
55
+ up1 = self.upperBranch(x)
56
+ up2 = self.lowerBranch(x)
57
+ out = up1 + up2
58
+ return out
59
+
60
+
61
+ class PyraNet(nn.Module):
62
+ def __init__(self):
63
+ super(PyraNet, self).__init__()
64
+
65
+ B, C = opt.baseWidth, opt.cardinality
66
+ self.inputResH = opt.inputResH / 4
67
+ self.inputResW = opt.inputResW / 4
68
+ self.nStack = opt.nStack
69
+
70
+ self.cnv1 = nn.Sequential(
71
+ nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
72
+ nn.BatchNorm2d(64),
73
+ nn.ReLU(True)
74
+ )
75
+ self.r1 = nn.Sequential(
76
+ ResidualPyramid(64, 128, opt.inputResH / 2, opt.inputResW / 2,
77
+ stride=1, net_type='no_preact', useConv=False, baseWidth=B, cardinality=C),
78
+ nn.MaxPool2d(2)
79
+ )
80
+ self.r4 = ResidualPyramid(128, 128, self.inputResH, self.inputResW,
81
+ stride=1, net_type='preact', useConv=False, baseWidth=B, cardinality=C)
82
+ self.r5 = ResidualPyramid(128, opt.nFeats, self.inputResH, self.inputResW,
83
+ stride=1, net_type='preact', useConv=False, baseWidth=B, cardinality=C)
84
+ self.preact = nn.Sequential(
85
+ self.cnv1,
86
+ self.r1,
87
+ self.r4,
88
+ self.r5
89
+ )
90
+ self.stack_layers = defaultdict(list)
91
+ for i in range(self.nStack):
92
+ hg = Hourglass(4, opt.nFeats, opt.nResidual, self.inputResH, self.inputResW, 'preact', B, C)
93
+ lin = nn.Sequential(
94
+ hg,
95
+ nn.BatchNorm2d(opt.nFeats),
96
+ nn.ReLU(True),
97
+ nn.Conv2d(opt.nFeats, opt.nFeats, kernel_size=1, stride=1, padding=0),
98
+ nn.BatchNorm2d(opt.nFeats),
99
+ nn.ReLU(True)
100
+ )
101
+ tmpOut = nn.Conv2d(opt.nFeats, opt.nClasses, kernel_size=1, stride=1, padding=0)
102
+ self.stack_layers['lin'].append(lin)
103
+ self.stack_layers['out'].append(tmpOut)
104
+ if i < self.nStack - 1:
105
+ lin_ = nn.Conv2d(opt.nFeats, opt.nFeats, kernel_size=1, stride=1, padding=0)
106
+ tmpOut_ = nn.Conv2d(opt.nClasses, opt.nFeats, kernel_size=1, stride=1, padding=0)
107
+ self.stack_layers['lin_'].append(lin_)
108
+ self.stack_layers['out_'].append(tmpOut_)
109
+
110
+ def forward(self, x: Variable):
111
+ out = []
112
+ inter = self.preact(x)
113
+ for i in range(self.nStack):
114
+ lin = self.stack_layers['lin'][i](inter)
115
+ tmpOut = self.stack_layers['out'][i](lin)
116
+ out.append(tmpOut)
117
+ if i < self.nStack - 1:
118
+ lin_ = self.stack_layers['lin_'][i](lin)
119
+ tmpOut_ = self.stack_layers['out_'][i](tmpOut)
120
+ inter = inter + lin_ + tmpOut_
121
+ return out
122
+
123
+
124
+ def createModel(**kw):
125
+ model = PyraNet()
126
+ return model
joints_detectors/Alphapose/SPPE/src/models/hgPRM.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from .layers.PRM import Residual as ResidualPyramid
3
+ from .layers.Residual import Residual as Residual
4
+ from torch.autograd import Variable
5
+ import torch
6
+ from opt import opt
7
+ import math
8
+
9
+
10
+ class Hourglass(nn.Module):
11
+ def __init__(self, n, nFeats, nModules, inputResH, inputResW, net_type, B, C):
12
+ super(Hourglass, self).__init__()
13
+
14
+ self.ResidualUp = ResidualPyramid if n >= 2 else Residual
15
+ self.ResidualDown = ResidualPyramid if n >= 3 else Residual
16
+
17
+ self.depth = n
18
+ self.nModules = nModules
19
+ self.nFeats = nFeats
20
+ self.net_type = net_type
21
+ self.B = B
22
+ self.C = C
23
+ self.inputResH = inputResH
24
+ self.inputResW = inputResW
25
+
26
+ up1 = self._make_residual(self.ResidualUp, False, inputResH, inputResW)
27
+ low1 = nn.Sequential(
28
+ nn.MaxPool2d(2),
29
+ self._make_residual(self.ResidualDown, False, inputResH / 2, inputResW / 2)
30
+ )
31
+ if n > 1:
32
+ low2 = Hourglass(n - 1, nFeats, nModules, inputResH / 2, inputResW / 2, net_type, B, C)
33
+ else:
34
+ low2 = self._make_residual(self.ResidualDown, False, inputResH / 2, inputResW / 2)
35
+
36
+ low3 = self._make_residual(self.ResidualDown, True, inputResH / 2, inputResW / 2)
37
+ up2 = nn.UpsamplingNearest2d(scale_factor=2)
38
+
39
+ self.upperBranch = up1
40
+ self.lowerBranch = nn.Sequential(
41
+ low1,
42
+ low2,
43
+ low3,
44
+ up2
45
+ )
46
+
47
+ def _make_residual(self, resBlock, useConv, inputResH, inputResW):
48
+ layer_list = []
49
+ for i in range(self.nModules):
50
+ layer_list.append(resBlock(self.nFeats, self.nFeats, inputResH, inputResW,
51
+ stride=1, net_type=self.net_type, useConv=useConv,
52
+ baseWidth=self.B, cardinality=self.C))
53
+ return nn.Sequential(*layer_list)
54
+
55
+ def forward(self, x: Variable):
56
+ up1 = self.upperBranch(x)
57
+ up2 = self.lowerBranch(x)
58
+ # out = up1 + up2
59
+ out = torch.add(up1, up2)
60
+ return out
61
+
62
+
63
+ class PyraNet(nn.Module):
64
+ def __init__(self):
65
+ super(PyraNet, self).__init__()
66
+
67
+ B, C = opt.baseWidth, opt.cardinality
68
+ self.inputResH = opt.inputResH / 4
69
+ self.inputResW = opt.inputResW / 4
70
+ self.nStack = opt.nStack
71
+
72
+ conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
73
+ if opt.init:
74
+ nn.init.xavier_normal(conv1.weight, gain=math.sqrt(1 / 3))
75
+
76
+ cnv1 = nn.Sequential(
77
+ conv1,
78
+ nn.BatchNorm2d(64),
79
+ nn.ReLU(True)
80
+ )
81
+
82
+ r1 = nn.Sequential(
83
+ ResidualPyramid(64, 128, opt.inputResH / 2, opt.inputResW / 2,
84
+ stride=1, net_type='no_preact', useConv=False, baseWidth=B, cardinality=C),
85
+ nn.MaxPool2d(2)
86
+ )
87
+ r4 = ResidualPyramid(128, 128, self.inputResH, self.inputResW,
88
+ stride=1, net_type='preact', useConv=False, baseWidth=B, cardinality=C)
89
+ r5 = ResidualPyramid(128, opt.nFeats, self.inputResH, self.inputResW,
90
+ stride=1, net_type='preact', useConv=False, baseWidth=B, cardinality=C)
91
+ self.preact = nn.Sequential(
92
+ cnv1,
93
+ r1,
94
+ r4,
95
+ r5
96
+ )
97
+
98
+ self.stack_lin = nn.ModuleList()
99
+ self.stack_out = nn.ModuleList()
100
+ self.stack_lin_ = nn.ModuleList()
101
+ self.stack_out_ = nn.ModuleList()
102
+
103
+ for i in range(self.nStack):
104
+ hg = Hourglass(4, opt.nFeats, opt.nResidual, self.inputResH, self.inputResW, 'preact', B, C)
105
+ conv1 = nn.Conv2d(opt.nFeats, opt.nFeats, kernel_size=1, stride=1, padding=0)
106
+ if opt.init:
107
+ nn.init.xavier_normal(conv1.weight, gain=math.sqrt(1 / 2))
108
+ lin = nn.Sequential(
109
+ hg,
110
+ nn.BatchNorm2d(opt.nFeats),
111
+ nn.ReLU(True),
112
+ conv1,
113
+ nn.BatchNorm2d(opt.nFeats),
114
+ nn.ReLU(True)
115
+ )
116
+ tmpOut = nn.Conv2d(opt.nFeats, opt.nClasses, kernel_size=1, stride=1, padding=0)
117
+ if opt.init:
118
+ nn.init.xavier_normal(tmpOut.weight)
119
+ self.stack_lin.append(lin)
120
+ self.stack_out.append(tmpOut)
121
+ if i < self.nStack - 1:
122
+ lin_ = nn.Conv2d(opt.nFeats, opt.nFeats, kernel_size=1, stride=1, padding=0)
123
+ tmpOut_ = nn.Conv2d(opt.nClasses, opt.nFeats, kernel_size=1, stride=1, padding=0)
124
+ if opt.init:
125
+ nn.init.xavier_normal(lin_.weight)
126
+ nn.init.xavier_normal(tmpOut_.weight)
127
+ self.stack_lin_.append(lin_)
128
+ self.stack_out_.append(tmpOut_)
129
+
130
+ def forward(self, x: Variable):
131
+ out = []
132
+ inter = self.preact(x)
133
+ for i in range(self.nStack):
134
+ lin = self.stack_lin[i](inter)
135
+ tmpOut = self.stack_out[i](lin)
136
+ out.append(tmpOut)
137
+ if i < self.nStack - 1:
138
+ lin_ = self.stack_lin_[i](lin)
139
+ tmpOut_ = self.stack_out_[i](tmpOut)
140
+ inter = inter + lin_ + tmpOut_
141
+ return out
142
+
143
+
144
+ class PyraNet_Inference(nn.Module):
145
+ def __init__(self):
146
+ super(PyraNet_Inference, self).__init__()
147
+
148
+ B, C = opt.baseWidth, opt.cardinality
149
+ self.inputResH = opt.inputResH / 4
150
+ self.inputResW = opt.inputResW / 4
151
+ self.nStack = opt.nStack
152
+
153
+ conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
154
+ if opt.init:
155
+ nn.init.xavier_normal(conv1.weight, gain=math.sqrt(1 / 3))
156
+
157
+ cnv1 = nn.Sequential(
158
+ conv1,
159
+ nn.BatchNorm2d(64),
160
+ nn.ReLU(True)
161
+ )
162
+
163
+ r1 = nn.Sequential(
164
+ ResidualPyramid(64, 128, opt.inputResH / 2, opt.inputResW / 2,
165
+ stride=1, net_type='no_preact', useConv=False, baseWidth=B, cardinality=C),
166
+ nn.MaxPool2d(2)
167
+ )
168
+ r4 = ResidualPyramid(128, 128, self.inputResH, self.inputResW,
169
+ stride=1, net_type='preact', useConv=False, baseWidth=B, cardinality=C)
170
+ r5 = ResidualPyramid(128, opt.nFeats, self.inputResH, self.inputResW,
171
+ stride=1, net_type='preact', useConv=False, baseWidth=B, cardinality=C)
172
+ self.preact = nn.Sequential(
173
+ cnv1,
174
+ r1,
175
+ r4,
176
+ r5
177
+ )
178
+
179
+ self.stack_lin = nn.ModuleList()
180
+ self.stack_out = nn.ModuleList()
181
+ self.stack_lin_ = nn.ModuleList()
182
+ self.stack_out_ = nn.ModuleList()
183
+
184
+ for i in range(self.nStack):
185
+ hg = Hourglass(4, opt.nFeats, opt.nResidual,
186
+ self.inputResH, self.inputResW, 'preact', B, C)
187
+ conv1 = nn.Conv2d(opt.nFeats, opt.nFeats,
188
+ kernel_size=1, stride=1, padding=0)
189
+ if opt.init:
190
+ nn.init.xavier_normal(conv1.weight, gain=math.sqrt(1 / 2))
191
+ lin = nn.Sequential(
192
+ hg,
193
+ nn.BatchNorm2d(opt.nFeats),
194
+ nn.ReLU(True),
195
+ conv1,
196
+ nn.BatchNorm2d(opt.nFeats),
197
+ nn.ReLU(True)
198
+ )
199
+ tmpOut = nn.Conv2d(opt.nFeats, opt.nClasses,
200
+ kernel_size=1, stride=1, padding=0)
201
+ if opt.init:
202
+ nn.init.xavier_normal(tmpOut.weight)
203
+ self.stack_lin.append(lin)
204
+ self.stack_out.append(tmpOut)
205
+ if i < self.nStack - 1:
206
+ lin_ = nn.Conv2d(opt.nFeats, opt.nFeats,
207
+ kernel_size=1, stride=1, padding=0)
208
+ tmpOut_ = nn.Conv2d(opt.nClasses, opt.nFeats,
209
+ kernel_size=1, stride=1, padding=0)
210
+ if opt.init:
211
+ nn.init.xavier_normal(lin_.weight)
212
+ nn.init.xavier_normal(tmpOut_.weight)
213
+ self.stack_lin_.append(lin_)
214
+ self.stack_out_.append(tmpOut_)
215
+
216
+ def forward(self, x: Variable):
217
+ inter = self.preact(x)
218
+ for i in range(self.nStack):
219
+ lin = self.stack_lin[i](inter)
220
+ tmpOut = self.stack_out[i](lin)
221
+ out = tmpOut
222
+ if i < self.nStack - 1:
223
+ lin_ = self.stack_lin_[i](lin)
224
+ tmpOut_ = self.stack_out_[i](tmpOut)
225
+ inter = inter + lin_ + tmpOut_
226
+ return out
227
+
228
+
229
+ def createModel(**kw):
230
+ model = PyraNet()
231
+ return model
232
+
233
+
234
+ def createModel_Inference(**kw):
235
+ model = PyraNet_Inference()
236
+ return model
joints_detectors/Alphapose/SPPE/src/models/layers/DUC.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch.nn.functional as F
3
+
4
+
5
+ class DUC(nn.Module):
6
+ '''
7
+ INPUT: inplanes, planes, upscale_factor
8
+ OUTPUT: (planes // 4)* ht * wd
9
+ '''
10
+ def __init__(self, inplanes, planes, upscale_factor=2):
11
+ super(DUC, self).__init__()
12
+ self.conv = nn.Conv2d(inplanes, planes, kernel_size=3, padding=1, bias=False)
13
+ self.bn = nn.BatchNorm2d(planes)
14
+ self.relu = nn.ReLU()
15
+
16
+ self.pixel_shuffle = nn.PixelShuffle(upscale_factor)
17
+
18
+ def forward(self, x):
19
+ x = self.conv(x)
20
+ x = self.bn(x)
21
+ x = self.relu(x)
22
+ x = self.pixel_shuffle(x)
23
+ return x
joints_detectors/Alphapose/SPPE/src/models/layers/PRM.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from .util_models import ConcatTable, CaddTable, Identity
3
+ import math
4
+ from opt import opt
5
+
6
+
7
+ class Residual(nn.Module):
8
+ def __init__(self, numIn, numOut, inputResH, inputResW, stride=1,
9
+ net_type='preact', useConv=False, baseWidth=9, cardinality=4):
10
+ super(Residual, self).__init__()
11
+
12
+ self.con = ConcatTable([convBlock(numIn, numOut, inputResH,
13
+ inputResW, net_type, baseWidth, cardinality, stride),
14
+ skipLayer(numIn, numOut, stride, useConv)])
15
+ self.cadd = CaddTable(True)
16
+
17
+ def forward(self, x):
18
+ out = self.con(x)
19
+ out = self.cadd(out)
20
+ return out
21
+
22
+
23
+ def convBlock(numIn, numOut, inputResH, inputResW, net_type, baseWidth, cardinality, stride):
24
+ numIn = int(numIn)
25
+ numOut = int(numOut)
26
+
27
+ addTable = ConcatTable()
28
+ s_list = []
29
+ if net_type != 'no_preact':
30
+ s_list.append(nn.BatchNorm2d(numIn))
31
+ s_list.append(nn.ReLU(True))
32
+
33
+ conv1 = nn.Conv2d(numIn, numOut // 2, kernel_size=1)
34
+ if opt.init:
35
+ nn.init.xavier_normal(conv1.weight, gain=math.sqrt(1 / 2))
36
+ s_list.append(conv1)
37
+
38
+ s_list.append(nn.BatchNorm2d(numOut // 2))
39
+ s_list.append(nn.ReLU(True))
40
+
41
+ conv2 = nn.Conv2d(numOut // 2, numOut // 2,
42
+ kernel_size=3, stride=stride, padding=1)
43
+ if opt.init:
44
+ nn.init.xavier_normal(conv2.weight)
45
+ s_list.append(conv2)
46
+
47
+ s = nn.Sequential(*s_list)
48
+ addTable.add(s)
49
+
50
+ D = math.floor(numOut // baseWidth)
51
+ C = cardinality
52
+ s_list = []
53
+
54
+ if net_type != 'no_preact':
55
+ s_list.append(nn.BatchNorm2d(numIn))
56
+ s_list.append(nn.ReLU(True))
57
+
58
+ conv1 = nn.Conv2d(numIn, D, kernel_size=1, stride=stride)
59
+ if opt.init:
60
+ nn.init.xavier_normal(conv1.weight, gain=math.sqrt(1 / C))
61
+
62
+ s_list.append(conv1)
63
+ s_list.append(nn.BatchNorm2d(D))
64
+ s_list.append(nn.ReLU(True))
65
+ s_list.append(pyramid(D, C, inputResH, inputResW))
66
+ s_list.append(nn.BatchNorm2d(D))
67
+ s_list.append(nn.ReLU(True))
68
+
69
+ a = nn.Conv2d(D, numOut // 2, kernel_size=1)
70
+ a.nBranchIn = C
71
+ if opt.init:
72
+ nn.init.xavier_normal(a.weight, gain=math.sqrt(1 / C))
73
+ s_list.append(a)
74
+
75
+ s = nn.Sequential(*s_list)
76
+ addTable.add(s)
77
+
78
+ elewiswAdd = nn.Sequential(
79
+ addTable,
80
+ CaddTable(False)
81
+ )
82
+ conv2 = nn.Conv2d(numOut // 2, numOut, kernel_size=1)
83
+ if opt.init:
84
+ nn.init.xavier_normal(conv2.weight, gain=math.sqrt(1 / 2))
85
+ model = nn.Sequential(
86
+ elewiswAdd,
87
+ nn.BatchNorm2d(numOut // 2),
88
+ nn.ReLU(True),
89
+ conv2
90
+ )
91
+ return model
92
+
93
+
94
+ def pyramid(D, C, inputResH, inputResW):
95
+ pyraTable = ConcatTable()
96
+ sc = math.pow(2, 1 / C)
97
+ for i in range(C):
98
+ scaled = 1 / math.pow(sc, i + 1)
99
+ conv1 = nn.Conv2d(D, D, kernel_size=3, stride=1, padding=1)
100
+ if opt.init:
101
+ nn.init.xavier_normal(conv1.weight)
102
+ s = nn.Sequential(
103
+ nn.FractionalMaxPool2d(2, output_ratio=(scaled, scaled)),
104
+ conv1,
105
+ nn.UpsamplingBilinear2d(size=(int(inputResH), int(inputResW))))
106
+ pyraTable.add(s)
107
+ pyra = nn.Sequential(
108
+ pyraTable,
109
+ CaddTable(False)
110
+ )
111
+ return pyra
112
+
113
+
114
+ class skipLayer(nn.Module):
115
+ def __init__(self, numIn, numOut, stride, useConv):
116
+ super(skipLayer, self).__init__()
117
+ self.identity = False
118
+
119
+ if numIn == numOut and stride == 1 and not useConv:
120
+ self.identity = True
121
+ else:
122
+ conv1 = nn.Conv2d(numIn, numOut, kernel_size=1, stride=stride)
123
+ if opt.init:
124
+ nn.init.xavier_normal(conv1.weight, gain=math.sqrt(1 / 2))
125
+ self.m = nn.Sequential(
126
+ nn.BatchNorm2d(numIn),
127
+ nn.ReLU(True),
128
+ conv1
129
+ )
130
+
131
+ def forward(self, x):
132
+ if self.identity:
133
+ return x
134
+ else:
135
+ return self.m(x)
joints_detectors/Alphapose/SPPE/src/models/layers/Residual.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import math
3
+ from .util_models import ConcatTable, CaddTable, Identity
4
+ from opt import opt
5
+
6
+
7
+ def Residual(numIn, numOut, *arg, stride=1, net_type='preact', useConv=False, **kw):
8
+ con = ConcatTable([convBlock(numIn, numOut, stride, net_type),
9
+ skipLayer(numIn, numOut, stride, useConv)])
10
+ cadd = CaddTable(True)
11
+ return nn.Sequential(con, cadd)
12
+
13
+
14
+ def convBlock(numIn, numOut, stride, net_type):
15
+ s_list = []
16
+ if net_type != 'no_preact':
17
+ s_list.append(nn.BatchNorm2d(numIn))
18
+ s_list.append(nn.ReLU(True))
19
+
20
+ conv1 = nn.Conv2d(numIn, numOut // 2, kernel_size=1)
21
+ if opt.init:
22
+ nn.init.xavier_normal(conv1.weight, gain=math.sqrt(1 / 2))
23
+ s_list.append(conv1)
24
+
25
+ s_list.append(nn.BatchNorm2d(numOut // 2))
26
+ s_list.append(nn.ReLU(True))
27
+
28
+ conv2 = nn.Conv2d(numOut // 2, numOut // 2, kernel_size=3, stride=stride, padding=1)
29
+ if opt.init:
30
+ nn.init.xavier_normal(conv2.weight)
31
+ s_list.append(conv2)
32
+ s_list.append(nn.BatchNorm2d(numOut // 2))
33
+ s_list.append(nn.ReLU(True))
34
+
35
+ conv3 = nn.Conv2d(numOut // 2, numOut, kernel_size=1)
36
+ if opt.init:
37
+ nn.init.xavier_normal(conv3.weight)
38
+ s_list.append(conv3)
39
+
40
+ return nn.Sequential(*s_list)
41
+
42
+
43
+ def skipLayer(numIn, numOut, stride, useConv):
44
+ if numIn == numOut and stride == 1 and not useConv:
45
+ return Identity()
46
+ else:
47
+ conv1 = nn.Conv2d(numIn, numOut, kernel_size=1, stride=stride)
48
+ if opt.init:
49
+ nn.init.xavier_normal(conv1.weight, gain=math.sqrt(1 / 2))
50
+ return nn.Sequential(
51
+ nn.BatchNorm2d(numIn),
52
+ nn.ReLU(True),
53
+ conv1
54
+ )
joints_detectors/Alphapose/SPPE/src/models/layers/Resnet.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch.nn.functional as F
3
+
4
+
5
+ class Bottleneck(nn.Module):
6
+ expansion = 4
7
+
8
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
9
+ super(Bottleneck, self).__init__()
10
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False)
11
+ self.bn1 = nn.BatchNorm2d(planes)
12
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
13
+ self.bn2 = nn.BatchNorm2d(planes)
14
+ self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, stride=1, bias=False)
15
+ self.bn3 = nn.BatchNorm2d(planes * 4)
16
+ self.downsample = downsample
17
+ self.stride = stride
18
+
19
+ def forward(self, x):
20
+ residual = x
21
+
22
+ out = F.relu(self.bn1(self.conv1(x)), inplace=True)
23
+ out = F.relu(self.bn2(self.conv2(out)), inplace=True)
24
+ out = self.bn3(self.conv3(out))
25
+
26
+ if self.downsample is not None:
27
+ residual = self.downsample(x)
28
+
29
+ out += residual
30
+ out = F.relu(out, inplace=True)
31
+
32
+ return out
33
+
34
+
35
+ class ResNet(nn.Module):
36
+ """ Resnet """
37
+ def __init__(self, architecture):
38
+ super(ResNet, self).__init__()
39
+ assert architecture in ["resnet50", "resnet101"]
40
+ self.inplanes = 64
41
+ self.layers = [3, 4, {"resnet50": 6, "resnet101": 23}[architecture], 3]
42
+ self.block = Bottleneck
43
+
44
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
45
+ self.bn1 = nn.BatchNorm2d(64, eps=1e-5, momentum=0.01, affine=True)
46
+ self.relu = nn.ReLU(inplace=True)
47
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2)
48
+
49
+ self.layer1 = self.make_layer(self.block, 64, self.layers[0])
50
+ self.layer2 = self.make_layer(self.block, 128, self.layers[1], stride=2)
51
+ self.layer3 = self.make_layer(self.block, 256, self.layers[2], stride=2)
52
+
53
+ self.layer4 = self.make_layer(
54
+ self.block, 512, self.layers[3], stride=2)
55
+
56
+ def forward(self, x):
57
+ x = self.maxpool(self.relu(self.bn1(self.conv1(x))))
58
+ x = self.layer1(x)
59
+ x = self.layer2(x)
60
+ x = self.layer3(x)
61
+ x = self.layer4(x)
62
+ return x
63
+
64
+ def stages(self):
65
+ return [self.layer1, self.layer2, self.layer3, self.layer4]
66
+
67
+ def make_layer(self, block, planes, blocks, stride=1):
68
+ downsample = None
69
+ if stride != 1 or self.inplanes != planes * block.expansion:
70
+ downsample = nn.Sequential(
71
+ nn.Conv2d(self.inplanes, planes * block.expansion,
72
+ kernel_size=1, stride=stride, bias=False),
73
+ nn.BatchNorm2d(planes * block.expansion),
74
+ )
75
+
76
+ layers = []
77
+ layers.append(block(self.inplanes, planes, stride, downsample))
78
+ self.inplanes = planes * block.expansion
79
+ for i in range(1, blocks):
80
+ layers.append(block(self.inplanes, planes))
81
+
82
+ return nn.Sequential(*layers)
joints_detectors/Alphapose/SPPE/src/models/layers/SE_Resnet.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from .SE_module import SELayer
3
+ import torch.nn.functional as F
4
+
5
+
6
+ class Bottleneck(nn.Module):
7
+ expansion = 4
8
+
9
+ def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=False):
10
+ super(Bottleneck, self).__init__()
11
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
12
+ self.bn1 = nn.BatchNorm2d(planes)
13
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
14
+ padding=1, bias=False)
15
+ self.bn2 = nn.BatchNorm2d(planes)
16
+ self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
17
+ self.bn3 = nn.BatchNorm2d(planes * 4)
18
+ if reduction:
19
+ self.se = SELayer(planes * 4)
20
+
21
+ self.reduc = reduction
22
+ self.downsample = downsample
23
+ self.stride = stride
24
+
25
+ def forward(self, x):
26
+ residual = x
27
+
28
+ out = F.relu(self.bn1(self.conv1(x)), inplace=True)
29
+ out = F.relu(self.bn2(self.conv2(out)), inplace=True)
30
+
31
+ out = self.conv3(out)
32
+ out = self.bn3(out)
33
+ if self.reduc:
34
+ out = self.se(out)
35
+
36
+ if self.downsample is not None:
37
+ residual = self.downsample(x)
38
+
39
+ out += residual
40
+ out = F.relu(out)
41
+
42
+ return out
43
+
44
+
45
+ class SEResnet(nn.Module):
46
+ """ SEResnet """
47
+
48
+ def __init__(self, architecture):
49
+ super(SEResnet, self).__init__()
50
+ assert architecture in ["resnet50", "resnet101"]
51
+ self.inplanes = 64
52
+ self.layers = [3, 4, {"resnet50": 6, "resnet101": 23}[architecture], 3]
53
+ self.block = Bottleneck
54
+
55
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7,
56
+ stride=2, padding=3, bias=False)
57
+ self.bn1 = nn.BatchNorm2d(64, eps=1e-5, momentum=0.01, affine=True)
58
+ self.relu = nn.ReLU(inplace=True)
59
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
60
+
61
+ self.layer1 = self.make_layer(self.block, 64, self.layers[0])
62
+ self.layer2 = self.make_layer(
63
+ self.block, 128, self.layers[1], stride=2)
64
+ self.layer3 = self.make_layer(
65
+ self.block, 256, self.layers[2], stride=2)
66
+
67
+ self.layer4 = self.make_layer(
68
+ self.block, 512, self.layers[3], stride=2)
69
+
70
+ def forward(self, x):
71
+ x = self.maxpool(self.relu(self.bn1(self.conv1(x)))) # 64 * h/4 * w/4
72
+ x = self.layer1(x) # 256 * h/4 * w/4
73
+ x = self.layer2(x) # 512 * h/8 * w/8
74
+ x = self.layer3(x) # 1024 * h/16 * w/16
75
+ x = self.layer4(x) # 2048 * h/32 * w/32
76
+ return x
77
+
78
+ def stages(self):
79
+ return [self.layer1, self.layer2, self.layer3, self.layer4]
80
+
81
+ def make_layer(self, block, planes, blocks, stride=1):
82
+ downsample = None
83
+ if stride != 1 or self.inplanes != planes * block.expansion:
84
+ downsample = nn.Sequential(
85
+ nn.Conv2d(self.inplanes, planes * block.expansion,
86
+ kernel_size=1, stride=stride, bias=False),
87
+ nn.BatchNorm2d(planes * block.expansion),
88
+ )
89
+
90
+ layers = []
91
+ if downsample is not None:
92
+ layers.append(block(self.inplanes, planes, stride, downsample, reduction=True))
93
+ else:
94
+ layers.append(block(self.inplanes, planes, stride, downsample))
95
+ self.inplanes = planes * block.expansion
96
+ for i in range(1, blocks):
97
+ layers.append(block(self.inplanes, planes))
98
+
99
+ return nn.Sequential(*layers)
joints_detectors/Alphapose/SPPE/src/models/layers/SE_module.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn
2
+
3
+
4
+ class SELayer(nn.Module):
5
+ def __init__(self, channel, reduction=1):
6
+ super(SELayer, self).__init__()
7
+ self.avg_pool = nn.AdaptiveAvgPool2d(1)
8
+ self.fc = nn.Sequential(
9
+ nn.Linear(channel, channel // reduction),
10
+ nn.ReLU(inplace=True),
11
+ nn.Linear(channel // reduction, channel),
12
+ nn.Sigmoid()
13
+ )
14
+
15
+ def forward(self, x):
16
+ b, c, _, _ = x.size()
17
+ y = self.avg_pool(x).view(b, c)
18
+ y = self.fc(y).view(b, c, 1, 1)
19
+ return x * y
joints_detectors/Alphapose/SPPE/src/models/layers/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from . import *
joints_detectors/Alphapose/SPPE/src/models/layers/util_models.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.autograd import Variable
4
+
5
+
6
+ class ConcatTable(nn.Module):
7
+ def __init__(self, module_list=None):
8
+ super(ConcatTable, self).__init__()
9
+
10
+ self.modules_list = nn.ModuleList(module_list)
11
+
12
+ def forward(self, x: Variable):
13
+ y = []
14
+ for i in range(len(self.modules_list)):
15
+ y.append(self.modules_list[i](x))
16
+ return y
17
+
18
+ def add(self, module):
19
+ self.modules_list.append(module)
20
+
21
+
22
+ class CaddTable(nn.Module):
23
+ def __init__(self, inplace=False):
24
+ super(CaddTable, self).__init__()
25
+ self.inplace = inplace
26
+
27
+ def forward(self, x: Variable or list):
28
+ return torch.stack(x, 0).sum(0)
29
+
30
+
31
+ class Identity(nn.Module):
32
+ def __init__(self, params=None):
33
+ super(Identity, self).__init__()
34
+ self.params = nn.ParameterList(params)
35
+
36
+ def forward(self, x: Variable or list):
37
+ return x
joints_detectors/Alphapose/SPPE/src/opt.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import torch
3
+
4
+ parser = argparse.ArgumentParser(description='PyTorch AlphaPose Training')
5
+
6
+ "----------------------------- General options -----------------------------"
7
+ parser.add_argument('--expID', default='default', type=str,
8
+ help='Experiment ID')
9
+ parser.add_argument('--dataset', default='coco', type=str,
10
+ help='Dataset choice: mpii | coco')
11
+ parser.add_argument('--nThreads', default=30, type=int,
12
+ help='Number of data loading threads')
13
+ parser.add_argument('--debug', default=False, type=bool,
14
+ help='Print the debug information')
15
+ parser.add_argument('--snapshot', default=1, type=int,
16
+ help='How often to take a snapshot of the model (0 = never)')
17
+
18
+ "----------------------------- AlphaPose options -----------------------------"
19
+ parser.add_argument('--addDPG', default=False, type=bool,
20
+ help='Train with data augmentation')
21
+
22
+ "----------------------------- Model options -----------------------------"
23
+ parser.add_argument('--netType', default='hgPRM', type=str,
24
+ help='Options: hgPRM | resnext')
25
+ parser.add_argument('--loadModel', default=None, type=str,
26
+ help='Provide full path to a previously trained model')
27
+ parser.add_argument('--Continue', default=False, type=bool,
28
+ help='Pick up where an experiment left off')
29
+ parser.add_argument('--nFeats', default=256, type=int,
30
+ help='Number of features in the hourglass')
31
+ parser.add_argument('--nClasses', default=17, type=int,
32
+ help='Number of output channel')
33
+ parser.add_argument('--nStack', default=8, type=int,
34
+ help='Number of hourglasses to stack')
35
+
36
+ "----------------------------- Hyperparameter options -----------------------------"
37
+ parser.add_argument('--LR', default=2.5e-4, type=float,
38
+ help='Learning rate')
39
+ parser.add_argument('--momentum', default=0, type=float,
40
+ help='Momentum')
41
+ parser.add_argument('--weightDecay', default=0, type=float,
42
+ help='Weight decay')
43
+ parser.add_argument('--crit', default='MSE', type=str,
44
+ help='Criterion type')
45
+ parser.add_argument('--optMethod', default='rmsprop', type=str,
46
+ help='Optimization method: rmsprop | sgd | nag | adadelta')
47
+
48
+
49
+ "----------------------------- Training options -----------------------------"
50
+ parser.add_argument('--nEpochs', default=50, type=int,
51
+ help='Number of hourglasses to stack')
52
+ parser.add_argument('--epoch', default=0, type=int,
53
+ help='Current epoch')
54
+ parser.add_argument('--trainBatch', default=40, type=int,
55
+ help='Train-batch size')
56
+ parser.add_argument('--validBatch', default=20, type=int,
57
+ help='Valid-batch size')
58
+ parser.add_argument('--trainIters', default=0, type=int,
59
+ help='Total train iters')
60
+ parser.add_argument('--valIters', default=0, type=int,
61
+ help='Total valid iters')
62
+ parser.add_argument('--init', default=None, type=str,
63
+ help='Initialization')
64
+ "----------------------------- Data options -----------------------------"
65
+ parser.add_argument('--inputResH', default=384, type=int,
66
+ help='Input image height')
67
+ parser.add_argument('--inputResW', default=320, type=int,
68
+ help='Input image width')
69
+ parser.add_argument('--outputResH', default=96, type=int,
70
+ help='Output heatmap height')
71
+ parser.add_argument('--outputResW', default=80, type=int,
72
+ help='Output heatmap width')
73
+ parser.add_argument('--scale', default=0.25, type=float,
74
+ help='Degree of scale augmentation')
75
+ parser.add_argument('--rotate', default=30, type=float,
76
+ help='Degree of rotation augmentation')
77
+ parser.add_argument('--hmGauss', default=1, type=int,
78
+ help='Heatmap gaussian size')
79
+
80
+ "----------------------------- PyraNet options -----------------------------"
81
+ parser.add_argument('--baseWidth', default=9, type=int,
82
+ help='Heatmap gaussian size')
83
+ parser.add_argument('--cardinality', default=5, type=int,
84
+ help='Heatmap gaussian size')
85
+ parser.add_argument('--nResidual', default=1, type=int,
86
+ help='Number of residual modules at each location in the pyranet')
87
+
88
+ "----------------------------- Distribution options -----------------------------"
89
+ parser.add_argument('--dist', dest='dist', type=int, default=1,
90
+ help='distributed training or not')
91
+ parser.add_argument('--backend', dest='backend', type=str, default='gloo',
92
+ help='backend for distributed training')
93
+ parser.add_argument('--port', dest='port',
94
+ help='port of server')
95
+
96
+
97
+ opt = parser.parse_args()
98
+ if opt.Continue:
99
+ opt = torch.load("../exp/{}/{}/option.pkl".format(opt.dataset, opt.expID))
100
+ opt.Continue = True
101
+ opt.nEpochs = 50
102
+ print("--- Continue ---")
joints_detectors/Alphapose/SPPE/src/utils/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from . import *
joints_detectors/Alphapose/SPPE/src/utils/dataset/.coco.py.swp ADDED
Binary file (4.1 kB). View file
 
joints_detectors/Alphapose/SPPE/src/utils/dataset/__init__.py ADDED
File without changes
joints_detectors/Alphapose/SPPE/src/utils/dataset/coco.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import h5py
3
+ from functools import reduce
4
+
5
+ import torch.utils.data as data
6
+ from ..pose import generateSampleBox
7
+ from opt import opt
8
+
9
+
10
+ class Mscoco(data.Dataset):
11
+ def __init__(self, train=True, sigma=1,
12
+ scale_factor=(0.2, 0.3), rot_factor=40, label_type='Gaussian'):
13
+ self.img_folder = '../data/coco/images' # root image folders
14
+ self.is_train = train # training set or test set
15
+ self.inputResH = opt.inputResH
16
+ self.inputResW = opt.inputResW
17
+ self.outputResH = opt.outputResH
18
+ self.outputResW = opt.outputResW
19
+ self.sigma = sigma
20
+ self.scale_factor = scale_factor
21
+ self.rot_factor = rot_factor
22
+ self.label_type = label_type
23
+
24
+ self.nJoints_coco = 17
25
+ self.nJoints_mpii = 16
26
+ self.nJoints = 33
27
+
28
+ self.accIdxs = (1, 2, 3, 4, 5, 6, 7, 8,
29
+ 9, 10, 11, 12, 13, 14, 15, 16, 17)
30
+ self.flipRef = ((2, 3), (4, 5), (6, 7),
31
+ (8, 9), (10, 11), (12, 13),
32
+ (14, 15), (16, 17))
33
+
34
+ # create train/val split
35
+ with h5py.File('../data/coco/annot_clean.h5', 'r') as annot:
36
+ # train
37
+ self.imgname_coco_train = annot['imgname'][:-5887]
38
+ self.bndbox_coco_train = annot['bndbox'][:-5887]
39
+ self.part_coco_train = annot['part'][:-5887]
40
+ # val
41
+ self.imgname_coco_val = annot['imgname'][-5887:]
42
+ self.bndbox_coco_val = annot['bndbox'][-5887:]
43
+ self.part_coco_val = annot['part'][-5887:]
44
+
45
+ self.size_train = self.imgname_coco_train.shape[0]
46
+ self.size_val = self.imgname_coco_val.shape[0]
47
+
48
+ def __getitem__(self, index):
49
+ sf = self.scale_factor
50
+
51
+ if self.is_train:
52
+ part = self.part_coco_train[index]
53
+ bndbox = self.bndbox_coco_train[index]
54
+ imgname = self.imgname_coco_train[index]
55
+ else:
56
+ part = self.part_coco_val[index]
57
+ bndbox = self.bndbox_coco_val[index]
58
+ imgname = self.imgname_coco_val[index]
59
+
60
+ imgname = reduce(lambda x, y: x + y, map(lambda x: chr(int(x)), imgname))
61
+ img_path = os.path.join(self.img_folder, imgname)
62
+
63
+ metaData = generateSampleBox(img_path, bndbox, part, self.nJoints,
64
+ 'coco', sf, self, train=self.is_train)
65
+
66
+ inp, out_bigcircle, out_smallcircle, out, setMask = metaData
67
+
68
+ label = []
69
+ for i in range(opt.nStack):
70
+ if i < 2:
71
+ # label.append(out_bigcircle.clone())
72
+ label.append(out.clone())
73
+ elif i < 4:
74
+ # label.append(out_smallcircle.clone())
75
+ label.append(out.clone())
76
+ else:
77
+ label.append(out.clone())
78
+
79
+ return inp, label, setMask, 'coco'
80
+
81
+ def __len__(self):
82
+ if self.is_train:
83
+ return self.size_train
84
+ else:
85
+ return self.size_val