# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import os import sys import zipfile from glob import glob from shutil import rmtree import h5py import numpy as np sys.path.append('../') from common.h36m_dataset import Human36mDataset from common.camera import world_to_camera, project_to_2d, image_coordinates from common.utils import wrap output_filename = 'data_3d_h36m' output_filename_2d = 'data_2d_h36m_gt' subjects = ['S1', 'S5', 'S6', 'S7', 'S8', 'S9', 'S11'] if __name__ == '__main__': if os.path.basename(os.getcwd()) != 'data': print('This script must be launched from the "data" directory') exit(0) parser = argparse.ArgumentParser(description='Human3.6M dataset downloader/converter') # Default: convert dataset preprocessed by Martinez et al. in https://github.com/una-dinosauria/3d-pose-baseline parser.add_argument('--from-archive', default='', type=str, metavar='PATH', help='convert preprocessed dataset') # Alternatively, convert dataset from original source (the Human3.6M dataset path must be specified manually) parser.add_argument('--from-source', default='', type=str, metavar='PATH', help='convert original dataset') args = parser.parse_args() if args.from_archive and args.from_source: print('Please specify only one argument') exit(0) if os.path.exists(output_filename + '.npz'): print('The dataset already exists at', output_filename + '.npz') exit(0) if args.from_archive: print('Extracting Human3.6M dataset from', args.from_archive) with zipfile.ZipFile(args.from_archive, 'r') as archive: archive.extractall() print('Converting...') output = {} for subject in subjects: output[subject] = {} file_list = glob('h36m/' + subject + '/MyPoses/3D_positions/*.h5') assert len(file_list) == 30, "Expected 30 files for subject " + subject + ", got " + str(len(file_list)) for f in file_list: action = os.path.splitext(os.path.basename(f))[0] if subject == 'S11' and action == 'Directions': continue # Discard corrupted video with h5py.File(f) as hf: positions = hf['3D_positions'].value.reshape(32, 3, -1).transpose(2, 0, 1) positions /= 1000 # Meters instead of millimeters output[subject][action] = positions.astype('float32') print('Saving...') np.savez_compressed(output_filename, positions_3d=output) print('Cleaning up...') rmtree('h36m') print('Done.') elif args.from_source: print('Converting original Human3.6M dataset from', args.from_source) output = {} from scipy.io import loadmat import ipdb; ipdb.set_trace() for subject in subjects: output[subject] = {} file_list = glob(args.from_source + '/' + subject + '/MyPoseFeatures/D3_Positions/*.cdf.mat') assert len(file_list) == 30, "Expected 30 files for subject " + subject + ", got " + str(len(file_list)) for f in file_list: action = os.path.splitext(os.path.splitext(os.path.basename(f))[0])[0] if subject == 'S11' and action == 'Directions': continue # Discard corrupted video # Use consistent naming convention canonical_name = action.replace('TakingPhoto', 'Photo') \ .replace('WalkingDog', 'WalkDog') hf = loadmat(f) positions = hf['data'][0, 0].reshape(-1, 32, 3) positions /= 1000 # Meters instead of millimeters output[subject][canonical_name] = positions.astype('float32') print('Saving...') np.savez_compressed(output_filename, positions_3d=output) print('Done.') else: print('Please specify the dataset source') exit(0) # Create 2D pose file print('') print('Computing ground-truth 2D poses...') dataset = Human36mDataset(output_filename + '.npz') output_2d_poses = {} for subject in dataset.subjects(): output_2d_poses[subject] = {} for action in dataset[subject].keys(): anim = dataset[subject][action] positions_2d = [] for cam in anim['cameras']: pos_3d = world_to_camera(anim['positions'], R=cam['orientation'], t=cam['translation']) pos_2d = wrap(project_to_2d, pos_3d, cam['intrinsic'], unsqueeze=True) pos_2d_pixel_space = image_coordinates(pos_2d, w=cam['res_w'], h=cam['res_h']) positions_2d.append(pos_2d_pixel_space.astype('float32')) output_2d_poses[subject][action] = positions_2d print('Saving...') metadata = { 'num_joints': dataset.skeleton().num_joints(), 'keypoints_symmetry': [dataset.skeleton().joints_left(), dataset.skeleton().joints_right()] } np.savez_compressed(output_filename_2d, positions_2d=output_2d_poses, metadata=metadata) print('Done.')